[1] Baggaley, N.J., Langan, S.J., Futter, M.N., Potts, J.M. and Dunn, S.M. (2009) Long-Term Trends in Hydro-Climatology of a Major Scottish Mountain River. Science of the Total Environment, 407, 4633-4641.
http://dx.doi.org/10.1016/j.scitotenv.2009.04.015
[2] Kocak, K. (1997) Application of Local Prediction Model to Water Level Data. A Satellite Conference to the 51st ISI Session in Istanbul, Turkey, Water and Statistics, Ankara, 185-193.
[3] Sivakumar, B. (2000) Chaos Theory in Hydrology: Important Issues and Interpretations. Journal of Hydrology, 227, 1-20.
http://dx.doi.org/10.1016/S0022-1694(99)00186-9
[4] Rodriguez-Iturbe, I., Febres de Power, B., Sharifi, M.B. and Georgakakos, K.P. (1989) Chaos in Rainfall. Water Resources Research, 25, 1667-1675.
http://dx.doi.org/10.1029/WR025i007p01667
[5] Sharifi, M.B., Georgakakos, K.P. and Rodriguez-Iturbe, I. (1990) Evidence of Deterministic Chaos in the Pulse of Storm Rainfall. Journal of the Atmospheric Sciences, 47, 888-893.
http://dx.doi.org/10.1175/1520-0469(1990)047<0888:EODCIT>2.0.CO;2
[6] Jayawardena, A.W. and Lai, F. (1994) Analysis and Prediction of Chaos in Rainfall and Stream Flow Time Series. Journal of Hydrology, 153, 28-52.
http://dx.doi.org/10.1016/0022-1694(94)90185-6
[7] Krasovskaia, I., Gottsehalk, L. and Kundzewicz, Z.W. (1999) Dimensionality of Scandinavian River Flow Regimes. Hydrological Sciences Journal, 44, 705-723.
http://dx.doi.org/10.1080/02626669909492269
[8] Porporato, A and Ridolfi, L. (1997) Nonlinear Analysis of River Flow Time Sequences. Water Resources Research, 33, 1353-1367.
http://dx.doi.org/10.1029/96WR03535
[9] Liu, Q., Islam, S., Rodriguez-lturbe, I. and Le, Y. (1998) Phase-Space Analysis of Daily Streamflow: Characterization and Prediction. Advances in Water Resources, 21, 463-475.
http://dx.doi.org/10.1016/S0309-1708(97)00013-4
[10] Sang, Y.F., Wanf, D., Wu, J.C., Zhu, Q.P. and Wang, L. (2011) Wavelet-Based Analysis on the Complexity of Hydrologic Series Data under Multi-Temporal Scales. Entropy, 13, 195-210.
http://dx.doi.org/10.3390/e13010195
[11] Sivakumar, B., Jayawardena, A.W. and Fernando, T.M.K.G. (2002) River Flow Forecasting: Use of Phase-Space Reconstruction and Artificial Neural Networks Approaches. Journal of Hydrology, 265, 225-245.
http://dx.doi.org/10.1016/S0022-1694(02)00112-9
[12] Sivakumar, B., Persson, M., Berndtsson, R. and Uvo, C.B. (2002) Is Correlation Dimension a Reliable Indicator of Low-Dimensional Chaos in Short Hydrological Time Series? Water Resources Research, 38, 3-1-3-8.
http://dx.doi.org/10.1029/2001WR000333
[13] Sivakumar, B. (2005) Correlation Dimension Estimation of Hydrologic Series and Data Size Requirement: Myth and Reality. Hydrological Sciences Journal, 50, 591-604.
[14] Sivakumar, B. (2009) Nonlinear Dynamics and Chaos in Hydrologic Systems: Latest Developments and a Look Forward. Stochastic Environmental Research and Risk Assessment, 23, 1027-1036.
[15] Khatibi, R., BellieSivakumar, B., Mohammad, A., Kisi, O., Kocak, K. and Zadeh, D. (2012) Investigating Chaos in River Stage and Discharge Time Series. Journal of Hydrology, 414-415, 108-117.
http://dx.doi.org/10.1016/j.jhydrol.2011.10.026
[16] Sivakumar, B. and Singh, V.P. (2011) Hydrologic System Complexity and Nonlinear Dynamic Concepts for a Catchment Classification Framework. Hydrology and Earth System Sciences, 8, 4427-4458.
http://dx.doi.org/10.5194/hessd-8-4427-2011
[17] Pasternack, G.B. (1999) Does the River Run Wild? Assessing Chaos in Hydrological Systems. Advances in Water Resources, 23, 253-260.
http://dx.doi.org/10.1016/S0309-1708(99)00008-1
[18] Liaw, C., Islam, M.N., Phoon, K.K. and Liong, S. (2001) Comment on ‘‘Does the River Run Wild? Assessing Chaos in Hydrological Systems’’ by G.B. Pasternack. Advances in Water Resources, 24, 575-578.
http://dx.doi.org/10.1016/S0309-1708(00)00053-1
[19] Koutsoyiannis, D. (2006) On the Quest for Chaotic Attractors in Hydrological Processes. Hydrological Sciences Journal, 51, 1065-1091.
[20] Islam, M.N. and Sivakumar, B. (2002) Characterization and Prediction of Runoff Dynamics: A Nonlinear Dynamical View. Advances in Water Resources, 25, 179-190.
http://dx.doi.org/10.1016/S0309-1708(01)00053-7
[21] Lisi, F. and Villi, V. (2001) Chaotic Forecasting of Discharge Time Series: A Case Study. Journal of the American Water Resources Association, 37, 271-279.
http://dx.doi.org/10.1111/j.1752-1688.2001.tb00967.x
[22] Ghorbani, M.A., Daneshfaraz, R., Arvanagi, H., Pourzangbar, A., Saghebian, S.M. and KavehKar, Sh. (2012) Local Prediction in River Discharge Time Series. Journal of Civil Engineering and Urbanism, 2, 51-55.
[23] Elshorbagy, A., Simonovic, S.P. and Panu, U.S. (2002) Noise Reduction in Chaotic Hydrologic Time Series: Facts and Doubts. Journal of Hydrology, 256, 147-165.
http://dx.doi.org/10.1016/S0022-1694(01)00534-0
[24] Meng, Q.F. and Peng, Y.H. (2007) A New Local Linear Prediction Model for Chaotic Time Series. Physics Letters A, 370, 465-470.
http://dx.doi.org/10.1016/j.physleta.2007.06.010
[25] Takens, F. (1981) Detecting Strange Attractors in Turbulence. In: Rand, D.A. and Young, L.S., Eds., Lectures Notes in Mathematics, Vol. 898, Springer-Verlag, New York, 366-381.
[26] Hegger, R., Kantz, H. and Schreiber, T. (1999) Practical Implementation of Nonlinear Time Series Methods: The TISEAN Package. Chaos, 9, 413-435.
http://dx.doi.org/10.1063/1.166424
[27] Fraser, A.M. and Swinney, H.L. (1986) Independent Coordinates for Strange Attractors from Mutual Information. Physical Review A, 33, 1134-1140.
http://dx.doi.org/10.1103/PhysRevA.33.1134
[28] Abarbanel, H.D.I. (1996) Analysis of Observed Chaotic Data. Springer-Verlag, New York, 272.
[29] Kennel, M.B., Brown, R. and Abarbanel, H.D.I. (1992) Determining Minimum Embedding Dimension Using a Geometrical Construction. Physical Review A, 45, 3403-3411.
http://dx.doi.org/10.1103/PhysRevA.45.3403
[30] Theiler, J. (1986) Spurious Dimension from Correlation Algorithms Applied to Limited Time-Series Data. Physical Review A, 34, 2427-2432.
http://dx.doi.org/10.1103/PhysRevA.34.2427
[31] Porporato, A. and Ridolfi, L. (1997) Nonlinear Analysis of River Flow Time Sequences. Water Resources Research, 33, 1353-1367.
http://dx.doi.org/10.1029/96WR03535
[32] Jayawardena, A.W. and Gurung, A.B. (2000) Noise Reduction and Prediction of Hydrometeorological Time Series: Dynamical System Approach vs. Stochastic Approach. Journal of Hydrology, 228, 242-264.
http://dx.doi.org/10.1016/S0022-1694(00)00142-6
[33] Eng, K., Wolock, D.M. and Carlisle, D.M. (2002) River Flow Changes Related to Land and Water Management Practices across the Conterminous United States. Science of the Total Environment, 463-464, 414-422.
[34] Elorza, F.J., Navarro-Ortega, A. and Barceló, D. (2012) Integrated Modelling and Monitoring at Different River Basin Scales under Global Change. Science of the Total Environment, 440, 1-2.
http://dx.doi.org/10.1016/j.scitotenv.2012.08.051
[35] Sivakumar, B., Jayawardena, A.W. and Li, W.K. (2007) Hydrologic Complexity and Classification: A Simple Data Reconstruction Approach. Hydrological Processes, 21, 2713-2728.
http://dx.doi.org/10.1002/hyp.6362