JMP  Vol.6 No.4 , March 2015
Dissipative Spherical Gravitational Collapse of Isotropic Fluid
ABSTRACT
We present a number of parametric class of exact solutions of a radiating star and the matching conditions required for the description of physically meaningful fluid. A number of previously known class of solutions have been rediscovered which describe well behaved nature of fluid distributions. The interior matter fluid is shear-free spherically symmetric isotropic and undergoing radial heat flow. The interior metric obeyed all the relevant physical and thermodynamic conditions and matched with Vaidya exterior metric over the boundary. Initially the interior solutions represent a static configuration of perfect fluid which then gradually starts evolving into radiating collapse. The apparent luminosity as observed by the distant observer at rest at infinity and the effective surface temperature are zero in remote past at the instant when collapse begins and at the stage when collapsing configuration reaches the horizon of the black hole.

Cite this paper
Tewari, B. and Charan, K. (2015) Dissipative Spherical Gravitational Collapse of Isotropic Fluid. Journal of Modern Physics, 6, 453-462. doi: 10.4236/jmp.2015.64049.
References
[1]   Penrose, R. (1969) Rivista Del Nuovo Cimento, 1, 252-276.

[2]   Joshi, P.S. and Malafarina, D. (2011) International Journal of Modern Physics D, 20, 2641-2729.
http://dx.doi.org/10.1142/S0218271811020792

[3]   Oppenheimer, J.R. and Snyder, H. (1939) Physical Review, 56, 455-459.
http://dx.doi.org/10.1103/PhysRev.56.455

[4]   Vaidya, P.C. (1951) Proceedings of the Indian Academy of Sciences—Section A, 33, 264-276.

[5]   Misner, C.W. (1965) Physical Review B, 137, 1360-1364.
http://dx.doi.org/10.1103/PhysRev.137.B1360

[6]   Lindquist, R.W., Schwartz, R.A. and Misner, C.W. (1965) Physical Review B, 137, 1364-1368.
http://dx.doi.org/10.1103/PhysRev.137.B1364

[7]   Herrera, L. and Santos, N.O. (2004) Physical Review D, 70, Article ID: 084004.
http://dx.doi.org/10.1103/PhysRevD.70.084004

[8]   Herrera, L., Di Prisco, A., Martin, J. and Ospino, J. (2006) Physical Review D, 74, Article ID: 044001.
http://dx.doi.org/10.1103/PhysRevD.74.044001

[9]   Mitra, A. (2006) Physical Review D, 74, 024010.
http://dx.doi.org/10.1103/PhysRevD.74.024010

[10]   Santos, N.O. (1985) Monthly Notices of the Royal Astronomical Society, 216, 403-410.

[11]   Glass, E.N. (1981) Physics Letters A, 86, 351-352.
http://dx.doi.org/10.1016/0375-9601(81)90553-3

[12]   Maiti, S.R. (1982) Physical Review D, 25, 2518-2521.
http://dx.doi.org/10.1103/PhysRevD.25.2518

[13]   de Oliveira, A.K.G., Santos, N.O. and Kolassis, C.A. (1985) Monthly Notices of the Royal Astronomical Society, 216, 1001-1011.
http://dx.doi.org/10.1093/mnras/216.4.1001

[14]   Bonnor, W.B., de Oliveira, A.K.G. and Santos, N.O. (1989) Physics Reports, 181, 269-326.
http://dx.doi.org/10.1016/0370-1573(89)90069-0

[15]   Banerjee, A., Chaterjee, S. and Dadhich, N. (2002) Modern Physics Letters A, 17, 2335-2339.
http://dx.doi.org/10.1142/S0217732302008320

[16]   Herrera, L., Di Prisco, A., Ospino, J., Fuenmayor, E. and Triconis, O. (2009) Physical Review D, 79, Article ID: 064025.
http://dx.doi.org/10.1103/PhysRevD.79.064025

[17]   Tewari, B.C. (1988) Astrophysics and Space Science, 149, 233-239.
http://dx.doi.org/10.1007/BF00639793

[18]   Tewari, B.C. (2010) Radiating Fluid Balls in General Relativity. VDM Verlag, Saarbrucken.

[19]   Tewari, B.C. (2012) Astrophysics and Space Science, 342, 73-77.
http://dx.doi.org/10.1007/s10509-012-1141-3

[20]   Tewari, B.C. (2013) General Relativity and Gravitation, 45, 1547-1558.
http://dx.doi.org/10.1007/s10714-013-1545-6

[21]   Tewari, B.C. and Charan, K. (2014) Astrophysics and Space Science, 351, 613-617.
http://dx.doi.org/10.1007/s10509-014-1851-9

[22]   Sharma, R. and Tikekar, R. (2012) General Relativity and Gravitation, 44, 2503-2520.
http://dx.doi.org/10.1007/s10714-012-1406-8

[23]   Ivanov, B.V. (2012) General Relativity and Gravitation, 44, 1835-1855.
http://dx.doi.org/10.1007/s10714-012-1370-3

[24]   Pinheiro, G. and Chan, R. (2013) General Relativity and Gravitation, 45, 243-261.
http://dx.doi.org/10.1007/s10714-012-1468-7

[25]   Vaidya, P.C. (1953) Nature, 171, 260-261.
http://dx.doi.org/10.1038/171260a0

[26]   Glass, E.N. (1979) Journal of Mathematical Physics, 20, 1508-1513.
http://dx.doi.org/10.1063/1.524210

[27]   Cahill, M.E. and McVittie, G.C. (1970) Journal of Mathematical Physics, 11, 1382-1391.
http://dx.doi.org/10.1063/1.1665273

[28]   Misner, C.W. and Sharp, D.H. (1964) Physical Review, 136, 571-576.
http://dx.doi.org/10.1103/PhysRev.136.B571

[29]   Israel, W. and Stewart, J. (1979) Annals of Physics, 118, 341-372.
http://dx.doi.org/10.1016/0003-4916(79)90130-1

[30]   Maartens, R. (1995) Classical and Quantum Gravity, 12, 1455-1465.
http://dx.doi.org/10.1088/0264-9381/12/6/011

[31]   Martinez, J. (1996) Physical Review D, 53, 6921-6940.
http://dx.doi.org/10.1103/PhysRevD.53.6921

[32]   Schwarzschild, M. (1958) Structure and Evolution of Stars. Dover, New York.

[33]   Misner, C.W. and Sharp, D.H. (1965) Physics Letters, 15, 279-281.
http://dx.doi.org/10.1016/0031-9163(65)91247-3

 
 
Top