Theoretical Study of Kaolinite Structure; Energy Minimization and Crystal Properties

Author(s)
Mohamed Salah Karmous

ABSTRACT

Computational energy minimization techniques have been used to study the structure and crystal properties of kaolinite. The full elastic tensors of the sheet silicates of clay have been derived with first-principles calculations based on density functional theory. All calculations were performed using GULP program.

Computational energy minimization techniques have been used to study the structure and crystal properties of kaolinite. The full elastic tensors of the sheet silicates of clay have been derived with first-principles calculations based on density functional theory. All calculations were performed using GULP program.

Cite this paper

nullM. Karmous, "Theoretical Study of Kaolinite Structure; Energy Minimization and Crystal Properties,"*World Journal of Nano Science and Engineering*, Vol. 1 No. 2, 2011, pp. 62-66. doi: 10.4236/wjnse.2011.12009.

nullM. Karmous, "Theoretical Study of Kaolinite Structure; Energy Minimization and Crystal Properties,"

References

[1] R.A. Young, and A.W. Hewat, “Verification of the triclinic crystal structure of kaolinite”. Clays and Clay Minerals, Vol.36, No. 3, 1988, pp. 225-232.

[2] D.L. Bish, and C.T. Johnston, “Rietveld refinement and Fourier transform infrared spectroscopic study of the dickite structure at low temperature”. Clays and Clay Minerals, Vol. 41, No. 31, 1993, pp. 297-304

[3] S. Naamen, H. Ben Rhaiem, M.S. Karmous and A. Ben Haj Amara, “XRD study of the stacking mode of the nacrite/alkali halides complexes”. Zeitschrift fur Kristallographie, Vol. 23, No. 2, 2006, pp. 499-504

[4] M.S. Karmous, J. Samira, J.-L. Robert and A.B.H. Amara, A.B.H. “Nature of disorder in synthetic hectorite”. Applied Clay Science, Vol. 51, No.1-2, 2011, pp. 23-32.

[5] T.Vanorio, M. Prasad and A. Nur, “Elastic properties of dry clay mineral aggregates, suspensions and sandstones”. Geophysical Journal International, Vol. 155, No. 1, 2003, pp. 319-326

[6] K.S. Alexandrov and T.V. Ryzhova, “ Elastic properties of rock-forming minerals II. Layered silicates” () Bulletin. USSR Academy of Science, Geophysics., Vol. 9, 1961, pp. 165-1168.

[7] P.A. Berge and J.G. Berryman, “ Realizability of negative pore compressibility in poroelastic composites”, Journal of Applied Mechanics., Vol. 62, No. 4, 1995, pp. 1053- 1062.

[8] K.W. Katahara, “Clay mineral elastic properties” SEG Annual Meeting Expanded Technical Programme Abstracts. 1996.

[9] Z. Wang, H. Wang and M.E. Cates, “ Effective elastic properties of solid clays” Geophysics, Vol. 66, No. 2, 2001, pp. 428-440.

[10] C.Tosaya and A. Nur “Effects of diagenesis and clays on compressional velocities in rocks”. Geophysical Research Letters, Vol. 9, No. 1, 1982, pp. 5-8.

[11] J.P. Castagna, D.-H Han and M.L. Batzle. “Issues in rock physics and implications for DHI interpretation” The Leading Edge, Vol. 14, 1995, pp. 883-885.

[12] D.H. Han, A. Nur and D. Morgan, “ Effects of porosity and clay content on wave velocities in sandstones”. Geophysics, Vol. 51, No.11, 1986, pp. 2093-2107.

[13] S. Jemai, A. Ben Haj Amara, J. Ben Brahim and A. Plan?on, “Structural study of a 10 ? unstable hydrate of kaolinite”. Journal of Applied Crystallography, Vol. 33, No. 4, 2000, pp. 1075-1081.

[14] B. Militzer, H.-R. Wenk, S. Stackhouse and L.Stixrude 2011. “First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy”. American Mineralogist. Vol. 96, 2011, pp 125-137,

[15] J.D. Gale, “ GULP: A computer program for the symmetry-adapted simulation of solids”. Journal of the Chemical Society - Faraday Transactions, Vol. 93, No. 4, 1997, pp. 629-637.

[16] B.G. Dick and A.W. Overhauser, “ Theory of the Dielectric Constants of Alkali Halide Crystals” Physical Review, Vol. 112, No. 1, 1958, pp. 90-103.

[17] K.-P. Schr?der, J. Sauer, M. Leslie, C. Richard, A. Catlow and J.M. Thomas, “ Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (HY zeolites) “Chemical Physics Letters, Vol. 188, No. 3-4, 1992, pp. 320-325.

[18] D.R. Collins and C.R.A Catlow, “Computer simulation of structures and cohesive properties of micas” American Mineralogist, Vol.77, No. 11-12, 1992, pp. 1172-1181.

[19] D.S. Coombes, C.R.A. Catlow and J.M. Garcés, “Computational studies of layered silicates”, Modelling and Simulation in Materials Science and Engineering, Vol. 11, No. 3, 2003, pp. 301-306.

[20] P.H.J. Mercier and Y. Le Page “Kaolin polytypes revisited abinitio”. Acta Crystallographica, B64, 2008, pp. 131-143.

[21] R.B. Neder, M. Burghammer, T.Z. Grasl, H. Schulz, A. Bram and S. Fiedler, “Refinement of the kaolinite structure from single-crystal synchrotron data”. Clays and Clay Minerals, Vol.47, 1999, pp. 487-494.

[22] H. Sato, K. Ono, C.T. Johnston and A Yamagishi, “First-principles studies on elastic constants of a 1:1 layered kaolinite mineral”. American Mineralogist, Vol. 90, 2005, pp. 1824-1826.

[1] R.A. Young, and A.W. Hewat, “Verification of the triclinic crystal structure of kaolinite”. Clays and Clay Minerals, Vol.36, No. 3, 1988, pp. 225-232.

[2] D.L. Bish, and C.T. Johnston, “Rietveld refinement and Fourier transform infrared spectroscopic study of the dickite structure at low temperature”. Clays and Clay Minerals, Vol. 41, No. 31, 1993, pp. 297-304

[3] S. Naamen, H. Ben Rhaiem, M.S. Karmous and A. Ben Haj Amara, “XRD study of the stacking mode of the nacrite/alkali halides complexes”. Zeitschrift fur Kristallographie, Vol. 23, No. 2, 2006, pp. 499-504

[4] M.S. Karmous, J. Samira, J.-L. Robert and A.B.H. Amara, A.B.H. “Nature of disorder in synthetic hectorite”. Applied Clay Science, Vol. 51, No.1-2, 2011, pp. 23-32.

[5] T.Vanorio, M. Prasad and A. Nur, “Elastic properties of dry clay mineral aggregates, suspensions and sandstones”. Geophysical Journal International, Vol. 155, No. 1, 2003, pp. 319-326

[6] K.S. Alexandrov and T.V. Ryzhova, “ Elastic properties of rock-forming minerals II. Layered silicates” () Bulletin. USSR Academy of Science, Geophysics., Vol. 9, 1961, pp. 165-1168.

[7] P.A. Berge and J.G. Berryman, “ Realizability of negative pore compressibility in poroelastic composites”, Journal of Applied Mechanics., Vol. 62, No. 4, 1995, pp. 1053- 1062.

[8] K.W. Katahara, “Clay mineral elastic properties” SEG Annual Meeting Expanded Technical Programme Abstracts. 1996.

[9] Z. Wang, H. Wang and M.E. Cates, “ Effective elastic properties of solid clays” Geophysics, Vol. 66, No. 2, 2001, pp. 428-440.

[10] C.Tosaya and A. Nur “Effects of diagenesis and clays on compressional velocities in rocks”. Geophysical Research Letters, Vol. 9, No. 1, 1982, pp. 5-8.

[11] J.P. Castagna, D.-H Han and M.L. Batzle. “Issues in rock physics and implications for DHI interpretation” The Leading Edge, Vol. 14, 1995, pp. 883-885.

[12] D.H. Han, A. Nur and D. Morgan, “ Effects of porosity and clay content on wave velocities in sandstones”. Geophysics, Vol. 51, No.11, 1986, pp. 2093-2107.

[13] S. Jemai, A. Ben Haj Amara, J. Ben Brahim and A. Plan?on, “Structural study of a 10 ? unstable hydrate of kaolinite”. Journal of Applied Crystallography, Vol. 33, No. 4, 2000, pp. 1075-1081.

[14] B. Militzer, H.-R. Wenk, S. Stackhouse and L.Stixrude 2011. “First-principles calculation of the elastic moduli of sheet silicates and their application to shale anisotropy”. American Mineralogist. Vol. 96, 2011, pp 125-137,

[15] J.D. Gale, “ GULP: A computer program for the symmetry-adapted simulation of solids”. Journal of the Chemical Society - Faraday Transactions, Vol. 93, No. 4, 1997, pp. 629-637.

[16] B.G. Dick and A.W. Overhauser, “ Theory of the Dielectric Constants of Alkali Halide Crystals” Physical Review, Vol. 112, No. 1, 1958, pp. 90-103.

[17] K.-P. Schr?der, J. Sauer, M. Leslie, C. Richard, A. Catlow and J.M. Thomas, “ Bridging hydrodyl groups in zeolitic catalysts: a computer simulation of their structure, vibrational properties and acidity in protonated faujasites (HY zeolites) “Chemical Physics Letters, Vol. 188, No. 3-4, 1992, pp. 320-325.

[18] D.R. Collins and C.R.A Catlow, “Computer simulation of structures and cohesive properties of micas” American Mineralogist, Vol.77, No. 11-12, 1992, pp. 1172-1181.

[19] D.S. Coombes, C.R.A. Catlow and J.M. Garcés, “Computational studies of layered silicates”, Modelling and Simulation in Materials Science and Engineering, Vol. 11, No. 3, 2003, pp. 301-306.

[20] P.H.J. Mercier and Y. Le Page “Kaolin polytypes revisited abinitio”. Acta Crystallographica, B64, 2008, pp. 131-143.

[21] R.B. Neder, M. Burghammer, T.Z. Grasl, H. Schulz, A. Bram and S. Fiedler, “Refinement of the kaolinite structure from single-crystal synchrotron data”. Clays and Clay Minerals, Vol.47, 1999, pp. 487-494.

[22] H. Sato, K. Ono, C.T. Johnston and A Yamagishi, “First-principles studies on elastic constants of a 1:1 layered kaolinite mineral”. American Mineralogist, Vol. 90, 2005, pp. 1824-1826.