JPEE  Vol.3 No.3 , March 2015
A New Rechargeable Battery Design Based on Magnesium and Persulfate
Abstract: A battery concept based on the chemical system of magnesium (anode) and persulfate (cathode) is presented. A complete procedure is given to prepare the battery for testing, although no experimental data is presented herein. The similarities of this system to a well-tested Li||LiFePO4 system lend strong credibility to the concept, and the estimated performance characteristics presented. The advantages of this design include the following many areas. First, inexpensive, and available, battery reagents exist. Second, by analogy to the lithium ion battery for which comparisons are made, the full fabrication process for battery separator design is known and efficient; and both the kJ/kg and Amps/kg values are estimated to be substantially larger than the lithium ion battery (e.g., Li||LiFePO4) experimental design. Finally, flammability of the Mg||MgS2O8 system can be expected to provide less of a potential flammability concern, compared to comparable lithium ion batteries. This is because lithium metal, as with any alkali metal, is aggressively flammable even under reduced moisture environments. The proposed magnesium persulfate battery calculated metrics yield an improvement of 194% greater output power (W/cm2·kg), and 154% greater stored energy (MJ/kg) than state-of-the-art lithium iron phosphate batteries.
Cite this paper: Disselkamp, R. (2015) A New Rechargeable Battery Design Based on Magnesium and Persulfate. Journal of Power and Energy Engineering, 3, 9-13. doi: 10.4236/jpee.2015.33002.

[1]   Nitta, N. and Yushin, G. (2013) High-Capacity Anode Materials for Lithium-Ion Batteries: Choice of Elements and Structures for Active Particles, Particle & Particle Systems Characterization. Materials Views, Wiley-VCH, 1-20.

[2]   Lee, J., Urban, A., Li, X., Su, D., Hautier, G. and Ceder, G. (2014) Unlocking the Potential of Cation-Disordered Oxides for Rechargeable Lithium Batteries, Science, 343, 519-522.

[3]   Mohanty, D., Sefat, A.S., Payzant, E.A., Li, J., Wood III, D.L. and Daniel, C. (2015) Unconventional Irreversible Structural Changes in a High-Voltage Li-Mn-Rich Oxide for Lithium-Ion Battery Cathodes. Journal of Power Sources, 283, 423-428.

[4]   Kennedy, T., Mullane, E., Geaney, H., Osiak, M., O’Dwyer, C. and Ryan, K.M. (2014) High-Performance Germanium Nanowire-Based Lithium-Ion Battery Anodes Extending over 1000 Cycles. Nano Letters, 14, 716-723.

[5]   Li, X., Liu, J., Banis, M.N., Lushington, A., Li, R., Cai, M. and Sun, X. (2014) Atomic Layer Deposition of Solid-State Electrolyte Coated Materials with Superior High Voltage Cycling for Lithium Ion Battery Application. Energy & Environmental Science, 7, 768-778.

[6]   Zhu, Y., Wang, F., Liu, L., Xiao, S., Yang, Y. and Wu, Y. (2013) Cheap Glass Fiber Mats as a Matrix of Gel Polymer Electrolytes for Lithium Ion Batteries. Scientific Reports, 3, 1-6.

[7]   Bard, A.J., Parsons, R. and Jordan, J. (1985) Standard Potentials in Aqueous Solution. IUPAC-Marcel Dekker Inc., New York.

[8]   Malik, R., Burch, D., Bazant, M. and Ceder, G. (2010) Particle Size Dependence of the Ionic Diffusivity. Nano Letters, 10, 4123-4127.

[9]   Geankopolis, C.J. (1983) Transport Processes and Unit Operations. 2nd Edition, Allyn and Bacon Inc., Boston.

[10]   Hancock, R.D. (1990) Molecular Mechanics Calculations and Metal Ion Recognition. Accounts of Chemical Research, 23, 253-257.