OJMC  Vol.5 No.1 , March 2015
Novel Cytocidal Substituted Phenyl 4-(2-Oxoimidazolidin-1-yl) Benzenesulfonates and Benzenesulfonamides with Affinity to the Colchicine-Binding Site: Is the Phenyl 2-Imidazolidinone Moiety a New Haptophore for the Design of New Antimitotics?
Abstract: Phenyl 4-(2-oxoimidazolidin-1-yl)benzenesulfonates (PIB-SOs) and phenyl 4-(2-oxoimidazolidin- 1-yl)benzenesulfonamides (PIB-SAs) are new, potent combretastatin A-4 (CA-4) analogs designed on the basis of their common phenyl 2-imidazolidone moiety. This phenyl 2-imidazolidone group is a bioisosteric equivalent of the trimethoxyphenyl group also found in colchicine, podophyllotoxin and several other ligands of the colchicine-binding site (C-BS). In this study, we investigate the interactions involved in the binding of PIB-SO and PIB-SA into the C-BS. We describe three distinct pockets (I, II, and III) as key structural elements involved in the interactions between the C-BS and PIB-SOs as well as PIB-SAs. We show that PIB-SOs and PIB-SAs adopt 4 and 3 distinct binding conformations, respectively, within the C-BS. The binding conformations I and IV are common to most PIB-SOs and PIB-SAs exhibiting high affinity for the C-BS and high cytocidal potency. In addition, binding conformation I is the main conformation adopted by PIB-SOs, PIB-SAs, T138067, ABT-751, colchicine and CA-4. We also observe that the sulfonate and the sulfonamide moieties of PIB-SOs and PIB-SAs are bioisosteric equivalents. Interestingly, we further find that a large portion of the phenyl 2-imidazolidinone moiety in these analogs does not bind to pocket I unlike the trimethoxyphenyl moiety found in several antimicrotubule agents such as colchicine, CA-4 and podophyllotoxin, suggesting that the phenyl 2-imidazolidinone group may represent a new haptophoric moiety useful for the design of new C-BS inhibitors mimicking the tropolone and the methoxylated phenolic moieties of colchicine and CA-4, respectively.
Cite this paper: Fortin, S. , Wei, L. , Kotra, L. , C.-Gaudreault, R. (2015) Novel Cytocidal Substituted Phenyl 4-(2-Oxoimidazolidin-1-yl) Benzenesulfonates and Benzenesulfonamides with Affinity to the Colchicine-Binding Site: Is the Phenyl 2-Imidazolidinone Moiety a New Haptophore for the Design of New Antimitotics?. Open Journal of Medicinal Chemistry, 5, 9-22. doi: 10.4236/ojmc.2015.51002.

[1]   Mariotto, A.B., Yabroff, K.R., Shao, Y.W., Feuer, E.J. and Brown, M.L. (2011) Projections of the Cost of Cancer Care in the United States: 2010-2020. Journal of the National Cancer Institute, 103, 117-128.

[2]   Bray, F., Jemal, A., Grey, N., Ferlay, J. and Forman, D. (2012) Global Cancer Transitions According to the Human Development Index (2008-2030): A Population-Based Study. The Lancet Oncology, 13, 790-801.

[3]   International Agency for Research on Cancer, Cancer Research UK (2012) World Cancer Factsheet. Cancer Research UK, London.

[4]   American Cancer Society (2015) Cancer Facts & Figures 2015. American Cancer Society, Atlanta.

[5]   Sawyer, T.K. (2004) Cancer Metastasis Therapeutic Targets and Drug Discovery: Emerging Small-Molecule Protein Kinase Inhibitors. Expert Opinion on Investigational Drugs, 13, 1-19.

[6]   Sawyers, C. (2004) Targeted Cancer Therapy. Nature, 432, 294-297.

[7]   Oslund, K.L., Miller, L.A., Usachenko, J.L., Tyler, N.K., Wu, R. and Hyde, D.M. (2004) Oxidant-Injured Airway Epithelial Cells Upregulate Thioredoxin but Do Not Produce Interleukin-8. American Journal of Respiratory Cell and Molecular Biology, 30, 597-604.

[8]   Tosoni, A., Ermani, M. and Brandes, A.A. (2004) The Pathogenesis and Treatment of Brain Metastases: A Comprehensive Review. Critical Reviews in Oncology/Hematology, 52, 199-215.

[9]   Wolf, M., Tebbe, S. and Fink, T. (2004) First-Line Chemotherapy in Metastatic Small-Cell Lung Cancer (SCLC). Lung Cancer, 45, S223-S234.

[10]   Pouessel, D., Culine, S., Becht, C., Ychou, M., Romieu, G., Fabbro, M., Cupissol, D. and Pinguet, F. (2004) Gemcitabine and Docetaxel as Front-Line Chemotherapy in Patients with Carcinoma of an Unknown Primary Site. Cancer, 100, 1257-1261.

[11]   Gridelli, C., Rossi, A., Maione, P., Rossi, E., Castaldo, V., Sacco, P.C. and Colantuoni, G. (2009) Vascular Disrupting Agents: A Novel Mechanism of Action in the Battle against Non-Small Cell Lung Cancer. The Oncologist, 14, 612- 620.

[12]   Kanthou, C. and Tozer, G.M. (2009) Microtubule Depolymerizing Vascular Disrupting Agents: Novel Therapeutic Agents for Oncology and Other Pathologies. International Journal of Experimental Pathology, 90, 284-294.

[13]   Patterson, D.M. and Rustin, G.J. (2007) Vascular Damaging Agents. Clinical Oncology (Royal College of Radiologists), 19, 443-456.

[14]   Marrelli, M., Conforti, F., Statti, G.A., Cachet, X., Michel, S., Tillequin, F. and Menichini, F. (2011) Biological Potential and Structure-Activity Relationships of Most Recently Developed Vascular Disrupting Agents: An Overview of New Derivatives of Natural Combretastatin A-4. Current Medicinal Chemistry, 18, 3035-3081.

[15]   Berlin, J.D., Venook, A., Bergsland, E., Rothenberg, M., Lockhart, A.C. and Rosen, L. (2008) Phase II Trial of T138067, a Novel Microtubule Inhibitor, in Patients with Metastatic, Refractory Colorectal Carcinoma. Clinical Colorectal Cancer, 7, 44-47.

[16]   Meany, H.J., Sackett, D.L., Maris, J.M., Ward, Y., Krivoshik, A., Cohn, S.L., Steinberg, S.M., Balis, F.M. and Fox, E. (2010) Clinical Outcome in Children with Recurrent Neuroblastoma Treated with ABT-751 and Effect of ABT-751 on Proliferation of Neuroblastoma Cell Lines and on Tubulin Polymerization in Vitro. Pediatric Blood & Cancer, 54, 47- 54.

[17]   Tron, G.C., Pirali, T., Sorba, G., Pagliai, F., Busacca, S. and Genazzani, A.A. (2006) Medicinal Chemistry of Combretastatin A4: Present and Future Directions. Journal of Medicinal Chemistry, 49, 3033-3044.

[18]   Nam, N.H. (2003) Combretastatin A-4 Analogues as Antimitotic Antitumor Agents. Current Medicinal Chemistry, 10, 1697-1722.

[19]   Vincent, L., Kermani, P., Young, L.M., Cheng, J., Zhang, F., Shido, K., Lam, G., Bompais-Vincent, H., Zhu, Z., Hicklin, D.J., Bohlen, P., Chaplin, D.J., May, C. and Rafii, S. (2005) Combretastatin A4 Phosphate Induces Rapid Regression of Tumor Neovessels and Growth through Interference with Vascular Endothelial-Cadherin Signaling. The Journal of Clinical Investigation, 115, 2992-3006.

[20]   Messaoudi, S., Treguier, B., Hamze, A., Provot, O., Peyrat, J.F., De Losada, J.R., Liu, J.M., Bignon, J., Wdzieczak-Bakala, J., Thoret, S., Dubois, J., Brion, J.D. and Alami, M. (2009) Isocombretastatins A versus Combretastatins A: The Forgotten isoCA-4 Isomer as a Highly Promising Cytotoxic and Antitubulin Agent. Journal of Medicinal Chemistry, 52, 4538-4542.

[21]   Chaudhary, A., Pandeya, S.N., Kumar, P., Sharma, P.P., Gupta, S., Soni, N., Verma, K.K. and Bhardwaj, G. (2007) Combretastatin A-4 Analogs as Anticancer Agents. Mini Reviews in Medicinal Chemistry, 7, 1186-1205.

[22]   Hsieh, H.P., Liou, J.P. and Mahindroo, N. (2005) Pharmaceutical Design of Antimitotic Agents Based on Combretastatins. Current Pharmaceutical Design, 11, 1655-1677.

[23]   Shan, Y., Zhang, J., Liu, Z., Wang, M. and Dong, Y. (2011) Developments of Combretastatin A-4 Derivatives as Anticancer Agents. Current Medicinal Chemistry, 18, 523-538.

[24]   Lu, Y., Chen, J.J., Xiao, M., Li, W. and Miller, D.D. (2012) An Overview of Tubulin Inhibitors that Interact with the Colchicine Binding Site. Pharmaceutical Research, 29, 2943-2971.

[25]   Gwaltney Ⅱ, S.L., Imade, H.M., Li, Q., Gehrke, L., Credo, R.B., Warner, R.B., Lee, J.Y., Kovar, P., Frost, D., Ng, S.C. and Sham, H.L. (2001) Novel Sulfonate Derivatives: Potent Antimitotic Agents. Bioorganic & Medicinal Chemistry Letters, 11, 1671-1673.

[26]   Gwaltney Ⅱ, S.L., Imade, H.M., Barr, K.J., Li, Q., Gehrke, L., Credo, R.B., Warner, R.B., Lee, J.Y., Kovar, P., Wang, J., Nukkala, M.A., Zielinski, N.A., Frost, D., Ng, S.C. and Sham, H.L. (2001) Novel Sulfonate Analogues of Combretastatin A-4: Potent Antimitotic Agents. Bioorganic & Medicinal Chemistry Letters, 11, 871-874.

[27]   Ducki, S., Mackenzie, G., Greedy, B., Armitage, S., Chabert, J.F., Bennett, E., Nettles, J., Snyder, J.P. and Lawrence, N.J. ( 2009) Combretastatin-Like Chalcones as Inhibitors of Microtubule Polymerisation. Part 2: Structure-Based Discovery of α-Aryl Chalcones. Bioorganic & Medicinal Chemistry, 17, 7711-7722.

[28]   Ducki, S., Rennison, D., Woo, M., Kendall, A., Chabert, J.F., McGown, A.T. and Lawrence, N.J. (2009) Combretastatin-Like Chalcones as Inhibitors of Microtubule Polymerization. Part 1: Synthesis and Biological Evaluation of Antivascular Activity. Bioorganic & Medicinal Chemistry, 17, 7698-7710.

[29]   Wang, L., Woods, K.W., Li, Q., Barr, K.J., McCroskey, R.W., Hannick, S.M., Gherke, L., Credo, R.B., Hui, Y.H., Marsh, K., Warner, R., Lee, J.Y., Zielinski-Mozng, N., Frost, D., Rosenberg, S.H. and Sham, H.L. (2002) Potent, Orally Active Heterocycle-Based Combretastatin A-4 Analogues: Synthesis, Structure-Activity Relationship, Pharmacokinetics, and in Vivo Antitumor Activity Evaluation. Journal of Medicinal Chemistry, 45, 1697-1711.

[30]   Romagnoli, R., Baraldi, P.G., Cruz-Lopez, O., Lopez Cara, C., Carrion, M.D., Brancale, A., Hamel, E., Chen, L., Bortolozzi, R., Basso, G. and Viola, G. (2010) Synthesis and Antitumor Activity of 1,5-Disubstituted 1,2,4-Triazoles as Cis-Restricted Combretastatin Analogues. Journal of Medicinal Chemistry, 53, 4248-4258.

[31]   Akselsen, O.W., Odlo, K., Cheng, J.J., Maccari, G., Botta, M. and Hansen, T.V. (2012) Synthesis, Biological Evaluation and Molecular Modeling of 1,2,3-Triazole Analogs of Combretastatin A-1. Bioorganic & Medicinal Chemistry, 20, 234- 242.

[32]   Kim, Y., Nam, N.H., You, Y.J. and Ahn, B.Z. (2002) Synthesis and Cytotoxicity of 3,4-Diaryl-2(5H)-Furanones. Bioorganic & Medicinal Chemistry Letters, 12, 719-722.

[33]   Ohsumi, K., Hatanaka, T., Fujita, K., Nakagawa, R., Fukuda, Y., Nihei, Y., Suga, Y., Morinaga, Y., Akiyama, Y. and Tsuji, T. (1998) Syntheses and Antitumor Activity of Cis-Restricted Combretastatins: 5-Membered Heterocyclic Analogues. Bioorganic & Medicinal Chemistry Letters, 8, 3153-3158.

[34]   Fortin, J.S., Cote, M.-F., Lacroix, J., Desjardins, M., Petitclerc, E. and C.-Gaudreault, R. (2008) Selective Alkylation of βII-Tubulin and Thioredoxin-1 by Structurally Related Subsets of Aryl Chloroethylureas Leading to either Anti-Microtubules or Redox Modulating Agents. Bioorganic & Medicinal Chemistry, 16, 7277-7290.

[35]   Fortin, J.S., Lacroix, J., Desjardins, M., Patenaude, A., Petitclerc, E. and C.-Gaudreault, R. (2007) Alkylation Potency and Protein Specificity of Aromatic Urea Derivatives and Bioisosteres as Potential Irreversible Antagonists of the Colchicine-Binding Site. Bioorganic & Medicinal Chemistry, 15, 4456-4469.

[36]   Fortin, S., Bouchon, B., Chambon, C., Lacroix, J., Moreau, E., Chezal, J.-M., Degoul, F. and C.-Gaudreault, R. (2011) Characterization of the Covalent Binding of N-Phenyl-N’-(2-chloroethyl)ureas to β-Tubulin: Importance of Glutamic Acid 198 in Microtubule Stability. The Journal of Pharmacology and Experimental Therapeutics, 336, 460-467.

[37]   Fortin, S., Moreau, E., Lacroix, J., Teulade, J.-C., Patenaude, A. and C.-Gaudreault, R. (2007) N-Phenyl-N’-(2-chlo- roethyl)urea Analogues of Combretastatin A-4: Is the N-Phenyl-N’-(2-chloroethyl)urea Pharmacophore Mimicking the Trimethoxy Phenyl Moiety? Bioorganic & Medicinal Chemistry Letters, 17, 2000-2004.

[38]   Fortin, S., Moreau, E., Patenaude, A., Desjardins, M., Lacroix, J., Rousseau, J.L. and C.-Gaudreault, R. (2007) N-Phenyl-N’-(2-chloroethyl)ureas (CEU) as Potential Antineoplastic Agents. Part 2: Role of ω-Hydroxyl Group in the Covalent Binding to β-Tubulin. Bioorganic & Medicinal Chemistry, 15, 1430-1438.

[39]   Fortin, S., Wei, L., Moreau, E., Labrie, P., Petitclerc, E., Kotra, L.P. and C.-Gaudreault, R. (2009) Mechanism of Action of N-Phenyl-N’-(2-chloroethyl)ureas in the Colchicine-Binding Site at the Interface between α- and β-Tubulin. Bioorganic & Medicinal Chemistry, 17, 3690-3697.

[40]   Fortin, S., Labrie, P., Moreau, E., Wei, L., Kotra, L.P. and C.-Gaudreault, R. (2008) A Comparative Molecular Field and Comparative Molecular Similarity Indices Analyses (CoMFA and CoMSIA) of N-Phenyl-N’-(2-chloroethyl)ureas Targeting the Colchicine-Binding Site as Anticancer Agents. Bioorganic & Medicinal Chemistry, 16, 1914-1926.

[41]   Moreau, E., Fortin, S., Desjardins, M., Rousseau, J.L., Petitclerc, E. and C.-Gaudreault, R. (2005) Optimized N-Phenyl-N’-(2-chloroethyl)ureas as Potential Antineoplastic Agents: Synthesis and Growth Inhibition Activity. Bioorganic & Medicinal Chemistry, 13, 6703-6712.

[42]   Moreau, E., Fortin, S., Lacroix, J., Patenaude, A., Rousseau, J.L. and C.-Gaudreault, R. (2008) N-Phenyl-N’- (2-chloroethyl)ureas (CEUs) as Potential Antineoplastic Agents. Part 3: Role of Carbonyl Groups in the Covalent Binding to the Colchicine-Binding Site. Bioorganic & Medicinal Chemistry, 16, 1206-1217.

[43]   Fortin, S., Wei, L., Moreau, E., Lacroix, J., Co?te?, M.-F., Petitclerc, E., Kotra, L.P. and C.-Gaudreault, R. (2011) Design, Synthesis, Biological Evaluation, and Structure-Activity Relationships of Substituted Phenyl 4-(2-Oxoimidazolidin-1- yl)benzenesulfonates as New Tubulin Inhibitors Mimicking Combretastatin A-4. Journal of Medicinal Chemistry, 54, 4559-4580.

[44]   Fortin, S., Wei, L., Moreau, E., Lacroix, J., Cote, M.-F., Petitclerc, E., Kotra, L.P. and C.-Gaudreault, R. (2011) Substituted Phenyl 4-(2-Oxoimidazolidin-1-yl)benzenesulfonamides as Antimitotics. Antiproliferative, Antiangiogenic and Antitumoral Activity, and Quantitative Structure-Activity Relationships. European Journal of Medicinal Chemistry, 46, 5327-5342.

[45]   Ruppert, J., Welch, W. and Jain, A.N. (1997) Automatic Identification and Representation of Protein Binding Sites for Molecular Docking. Protein Science, 6, 524-533.

[46]   Dorleans, A., Gigant, B., Ravelli, R.B., Mailliet, P., Mikol, V. and Knossow, M. (2009) Variations in the Colchicine- Binding Domain Provide Insight into the Structural Switch of Tubulin. Proceedings of the National Academy of Sciences of the United States of America, 106, 13775-13779.

[47]   Ravelli, R.B., Gigant, B., Curmi, P.A., Jourdain, I., Lachkar, S., Sobel, A. and Knossow, M. (2004) Insight into Tubulin Regulation from a Complex with Colchicine and a Stathmin-Like Domain. Nature, 428, 198-202.

[48]   Nguyen, T.L., McGrath, C., Hermone, A.R., Burnett, J.C., Zaharevitz, D.W., Day, B.W., Wipf, P., Hamel, E. and Gussio, R. (2005) A Common Pharmacophore for a Diverse Set of Colchicine Site Inhibitors Using a Structure-Based Approach. Journal of Medicinal Chemistry, 48, 6107-6116.

[49]   Tripathi, A., Durrant, D., Lee, R.M., Baruchello, R., Romagnoli, R., Simoni, D. and Kellogg, G.E. (2009) Hydropathic Analysis and Biological Evaluation of Stilbene Derivatives as Colchicine Site Microtubule Inhibitors with Anti-Leukemic Activity. Journal of Enzyme Inhibition and Medicinal Chemistry, 24, 1237-1244.

[50]   Hu, L., Li, Z.R., Li, Y., Qu, J., Ling, Y.H., Jiang, J.D. and Boykin, D.W. (2006) Synthesis and Structure-Activity Relationships of Carbazole Sulfonamides as a Novel Class of Antimitotic Agents against Solid Tumors. Journal of Medicinal Chemistry, 49, 6273-6282.

[51]   Zhou, J., Zhang, Y., Cui, Y.W., Li, Z.M., Song, H.R., Dong, J.H., Chen, X.G. and Xu, B.L. (2011) Synthesis and Cytotoxic Evaluation of N-(4-Methoxy-1H-benzo[d]imidazol-7-yl)-arylsulfonamide and N-Aryl-(4-methoxy-1H-benzo [d]imi- dazol)-7-sulfonamide Analogs of Combretastatin A-4. Journal of Asian Natural Products Research, 13, 330-340.

[52]   SYBYL. 8.1, Tripos International, 1699 South Hanley Rd., St. Louis, Missouri, 63144, USA.