[1] Fambrough, D.M. (1979) Control of Acetylcholine Receptors in Skeletal Muscle. Physiological Reviews, 59, 165-227.
[2] Fertuck, H.C. and Salpeter, M.M. (1976) Quantitation of Junctional and Extrajunctional Acetylcholine Receptors by Electron Microscope Autoradiography after 125I-Alpha-Bungarotoxin Binding at Mouse Neuromuscular Junctions. Journal of Cell Biology, 69, 144-158.
http://dx.doi.org/10.1083/jcb.69.1.144
[3] Hall, Z.W. and Sanes, J.R. (1993) Synaptic Structure and Development: The Neuromuscular Junction. Cell, 72/10 (suppl.), 99-121.
[4] Bowe, M.A. and Fallon, J.R. (1995) The Role of Agrin in Synapse Formation. Annual Review of Neuroscience, 18, 443-462.
http://dx.doi.org/10.1146/annurev.ne.18.030195.002303
[5] Zong, Y. and Jin, R. (2013) Structural Mechanisms of the Agrin-LRP4-MuSK Signaling Pathway in Neuromuscular Junction Differentiation. Cellular and Molecular Life Sciences, 70, 3077-3088.
http://dx.doi.org/10.1007/s00018-012-1209-9
[6] Bowen, D.C., Park, J.S., Bodine, S., Stark, J.L., Valenzuela, D.M., Stitt, T.N., Yancopoulos, G.D., Lindsay, R.M., Glass, D.J. and DiStefano, P.S. (1998) Localization and Regulation of MuSK at the Neuromuscular Junction. Developmental Biology, 199, 309-319.
http://dx.doi.org/10.1006/dbio.1998.8936
[7] Gautam, M., DeChiara, T.M., Glass, D.J., Yancopoulos, G.D. and Sanes, J.R. (1999) Distinct Phenotypes of Mutant Mice Lacking Agrin, MuSK, or Rapsyn. Brain Research. Developmental Brain Research, 114, 171-178.
http://dx.doi.org/10.1016/S0165-3806(99)00013-9
[8] Glass, D.J., Bowen, D.C., Stitt, T.N., Radziejewski, C., Bruno, J., Ryan, T.E., Gies, D.R., Shah, S., Mattsson, K., Burden, S.J., DeStefano, P.S., Valenzuela, D.M., DeChiara, T.M. and Yancopolous, G.D. (1996) Agrin Acts via a MuSK Receptor Complex. Cell, 85, 513-523.
http://dx.doi.org/10.1016/S0092-8674(00)81252-0
[9] Sugiyama, J.E., Glass, D.J., Yancopoulos, G.D. and Hall, Z.W. (1997) Laminin-Induced Acetylcholine Receptor Clustering: An Alternative Pathway. Journal of Cell Biology, 139, 181-191.
http://dx.doi.org/10.1083/jcb.139.1.181
[10] Valenzuela, D.M., Stitt, T.N., DeStefano, P.S., Rojas, E., Mattsson, K., Compton, D.L., Nunez, L., Park, J.S., Stark, J.L., Gies, D.R., Thomas, S., LeBeau, M.M., Fernald, A.A., Copeland, N.G., Jenkins, N.A., Burden, S.J. and Yancopolous, G.D. (1995) Receptor Tyrosine Kinase Specific for the Skeletal Muscle Lineage: Expression in Embryonic Muscle, at the Neuromuscular Junction, and after Injury. Neuron, 15, 573-584.
http://dx.doi.org/10.1016/0896-6273(95)90146-9
[11] Campanelli, J.T., Roberds, S.L., Campbell, K.P. and Scheller, R.H. (1994) A Role for Dystrophin-Associated Glycoproteins and Utrophin in Agrin-Induced AChR Clustering. Cell, 77, 663-674.
http://dx.doi.org/10.1016/0092-8674(94)90051-5
[12] Sugiyama, J., Bowen, D.C. and Hall, Z.W. (1994) Dystroglycan Binds Nerve and Muscle Agrin. Neuron, 13, 103-115.
http://dx.doi.org/10.1016/0896-6273(94)90462-6
[13] Cohen, M.W., Jacobson, C., Godfrey, E.W., Campbell, K.P. and Carbonetto, S. (1995) Distribution of Alpha-Dystroglycan during Embryonic Nerve-Muscle Synaptogenesis. Journal of Cell Biology, 129, 1093-1101.
http://dx.doi.org/10.1083/jcb.129.4.1093
[14] Fuhrer, C., Sugiyama, J.E., Taylor, R.G. and Hall, Z.W. (1997) Association of Muscle-Specific Kinase MuSK with the Acetylcholine Receptor in Mammalian Muscle. The EMBO Journal, 16, 4951-4960.
http://dx.doi.org/10.1093/emboj/16.16.4951
[15] Grow, W.A. and Gordon, H. (2000) Acetylcholine Receptors Are Required for Postsynaptic Aggregation Driven by the Agrin Signaling Pathway. European Journal of Neuroscience, 12, 467-472.
http://dx.doi.org/10.1046/j.1460-9568.2000.00923.x
[16] Yaffe, D. and Saxel, O. (1977) Serial Passaging and Differentiation of Myogenic Cells Isolated from Dystrophic Mouse Muscle. Nature, 270, 725-727.
http://dx.doi.org/10.1038/270725a0
[17] Blau, H.M., Pavlath, G.K., Hardeman, E.C., Chiu, C.P., Silberstein, L., Webster, S.G., Miller, S.C. and Webster, C. (1985) Plasticity of the Differentiated State. Science, 230, 758-766.
http://dx.doi.org/10.1126/science.2414846
[18] Godfrey, E.W., Nitkin, R.M., Wallace, B.G., Rubin, L.L. and McMahan, U.J. (1984) Components of Torpedo Electric Organ and Muscle that Cause Aggregation of Acetylcholine Receptors on Cultured Muscle Cells. Journal of Cell Biology, 99, 615-627.
http://dx.doi.org/10.1083/jcb.99.2.615
[19] Nitkin, R.M., Smith, M.A., Magill, C., Fallon, J.R., Yao, Y.M., Wallace, B.G. and McMahan, U.J. (1987) Identification of Agrin, a Synaptic Organizing Protein from Torpedo Electric Organ. Journal of Cell Biology, 105, 2471-2478.
http://dx.doi.org/10.1083/jcb.105.6.2471
[20] McMahan, U.J. (1990) The Agrin Hypothesis. Cold Spring Harbor Symposia on Quantitative Biology, 55, 407-418.
http://dx.doi.org/10.1101/SQB.1990.055.01.041
[21] Ferns, M.J., Campanelli, J.T., Hoch, W., Scheller, R.H. and Hall, Z. (1993) The Ability of Agrin to Cluster AChRs Depends on Alternative Splicing and on Cell Surface Proteoglycans. Neuron, 11, 491-502.
http://dx.doi.org/10.1016/0896-6273(93)90153-I
[22] Ferns, M., Deiner, M. and Hall, Z. (1996) Agrin-Induced Acetylcholine Receptor Clustering in Mammalian Muscle Requires Tyrosine Phosphorylation. Journal of Cell Biology, 132, 937-944.
http://dx.doi.org/10.1083/jcb.132.5.937
[23] Wallace, B.G., Qu, Z. and Richard, H.L. (1991) Agrin Induces Phosphorylation of the Nicotinic Acetylcholine Receptor. Neuron, 6, 869-878.
http://dx.doi.org/10.1016/0896-6273(91)90227-Q
[24] Tang, H., Sun, Z. and Goldman, D. (2001) CaM Kinase II-Dependent Suppression of Nicotinic Acetylcholine Receptor Delta-Subunit Promoter Activity. Journal of Biological Chemistry, 276, 26057-26065.
http://dx.doi.org/10.1074/jbc.M101670200
[25] Tang, H., Macpherson, P., Argetsinger, L.S., Cieslak, D., Suhr, S.T., Carter-Su, C. and Goldman, D. (2004) CaM Kinase II-Dependent Phos-phorylation of Myogenin Contributes to Activity-Dependent Suppression of nAChR Gene Expression in Developing Rat Myotubes. Cellular Signalling, 16, 551-563.
http://dx.doi.org/10.1016/j.cellsig.2003.09.006
[26] Schapiro, M. (2007) Sex & Plastic. In: Exposed: The Toxic Chemistry of Everyday Products and What’s at Stake for American Power, Chelsea Green Publishing Company, White River Junction, 42-66.
[27] Steffens, B.W., Batia, L.M., Baarson, C.J., Choi, C.K.C. and Grow, W.A. (2007) The Pesticide Methoxychlor Decreases Myotube Formation in Cell Culture by Slowing Myoblast Proliferation. Toxicology in Vitro, 21, 770-781.
http://dx.doi.org/10.1016/j.tiv.2007.01.007
[28] Grow, W.A. and Eroschenko, V.P. (2002) The Pesticide Methoxychlor Disrupts the Fusion of Myoblasts into Myotubes in Skeletal Muscle Cell Culture. Toxicology and Applied Pharmacology, 179, 105-110.
http://dx.doi.org/10.1006/taap.2002.9355
[29] Ravdin, P. and Axelrod, D. (1977) Fluorescent Tetramethyl Rhodamine Derivatives of Alpha-Bungarotoxin: Preparation, Separation, and Characterization. Analytical Biochemistry, 80, 585-592.
http://dx.doi.org/10.1016/0003-2697(77)90682-0
[30] Rando, T.A. and Blau, H.M. (1994) Primary Mouse Myoblast Purification, Characterization, and Transplantation for Cell-Mediated Gene Therapy. Journal of Cell Biology, 125, 1275-1287.
http://dx.doi.org/10.1083/jcb.125.6.1275
[31] Miller, T.J. and Grow, W.A. (2004) Mercury Decreases the Frequency of Induced but Not Spontaneous Clustering of Acetylcholine Receptors. Cell and Tissue Research, 316, 211-219.
http://dx.doi.org/10.1007/s00441-004-0878-6
[32] Owen, D.B., Chamberlain, K.T., Shishido, S. and Grow, W.A. (2010) Ethanol Decreases Agrin-Induced Acetylcholine Receptor Clustering in C2C12 Myotube Culture. Toxicology in Vitro, 24, 645-651.
http://dx.doi.org/10.1016/j.tiv.2009.09.020
[33] Willhite, C.C., Ball, G.L. and McLellan, C.J. (2008) Derivation of a Bisphenol A Oral Reference Dose (RfD) and Drinking-Water Equivalent Concentration. Journal of Toxicology and Environmental Health Part B, 11, 69-146.
http://dx.doi.org/10.1080/10937400701724303
[34] Olea, N., Pulgar, R., Perez, P., Olea-Serrano, F., Rivas, A., Novillo-Fertrell, A., Pedraza, V., Soto, A.M. and Sonnenschein, C. (1996) Estrogenicity of Resin-Based Composites and Sealants Used in Dentistry. Environmental Health Perspectives, 104, 298-305.
http://dx.doi.org/10.1289/ehp.96104298
[35] Kamrin, M.A. (2004) Bisphenol A: A Scientific Evaluation. Medscape General Medicine, 6, 7.
[36] Miyamoto, K. and Kotake, M. (2006) Estimation of Daily Bisphenol A Intake of Japanese Individuals with Emphasis on Uncertainty and Variability. Environmental Sciences, 13, 15-29.
[37] Cao, X.L., Dufresne, G., Belisle, S., Clement, G., Falicki, M., Beraldin, F. and Rulibikiye, A. (2008) Levels of Bisphenol A in Canned Liquid Infant Formula Products in Canada and Dietary Intake Estimates. Journal of Agricultural and Food Chemistry, 56, 7919-7924.
http://dx.doi.org/10.1021/jf8008712
[38] Kang, J.H., Kondo, F. and Katayama, Y. (2006) Human Exposure to Bisphenol A. Toxicology, 226, 79-89.
http://dx.doi.org/10.1016/j.tox.2006.06.009
[39] Latini, G., De Felice, C., Presta, G., Del Vecchio, A., Paris, I., Ruggieri, F. and Mazzeo, P. (2003) In Utero Exposure to Di-(2-ethylhexyl)phthalate and Duration of Human Pregnancy. Environmental Health Perspectives, 111, 1783-1785. http://dx.doi.org/10.1289/ehp.6202
[40] Main, K.M., Mortensen, G.K., Kaleva, M.M., Boisen, K.A., Damgaard, I.N., Chellakooty, M., Schmidt, I.M., Suomi, A.M., Virtanen, H.E., Petersen, D.V., Andersson, A.M., Toppari, J. and Skakkebaek, N.E. (2006) Human Breast Milk Contamination with Phthalates and Alterations of Endogenous Reproductive Hormones in Infants Three Months of Age. Environmental Health Perspectives, 114, 270-276.
http://dx.doi.org/10.1289/ehp.8075
[41] Wilson, V.S., Blystone, C.R., Hotchkiss, A.K., Rider, C.V. and Gray, L.E. (2008) Diverse Mechanisms of Anti-Androgen Action: Impact on Male Rat Reproductive Tract Development. International Journal of Andrology, 31, 178-187.
http://dx.doi.org/10.1111/j.1365-2605.2007.00861.x
[42] Howdeshell, K.L., Rider, C.V., Wilson, V.S. and Gray, L.E. (2008) Mechanisms of Action of Phthalate Esters, Individually and in Combination, to Induce Abnormal Repro-ductive Development in Male Laboratory Rats. Environmental Research, 108, 168-176.
http://dx.doi.org/10.1016/j.envres.2008.08.009
[43] Swan, S.H., Main, K.M., Liu, F., Stewart, S.L., Kruse, R.L., Calafat, A.M., Mao, C.S., Redmon, J.B., Ternand, C.L., Sullivan, S. and Teague, J.L. (2005) Decrease in Anogenital Distance among Male Infants with Prenatal Phthalate Exposure. Environmental Health Perspectives, 113, 1056-1061.
http://dx.doi.org/10.1289/ehp.8100
[44] Marsee, K., Woodruff, T.J., Axelrad, D.A., Calafat, A.M. and Swan, S.H. (2006) Estimated Daily Phthalate Exposures in a Population of Mothers of Male Infants Exhibiting Reduced Anogenital Distance. Environmental Health Perspectives, 114, 805-809.
http://dx.doi.org/10.1289/ehp.8663
[45] Doull, J., Cattley, R., Elcombe, C., Lake, B.G., Swenberg, J., Wilkinson, C., Van Williams, G. and Gernert, M. (1999) A Cancer Risk Assessment of Di(2-ethylhexyl)phthalate: Application of the New U.S. EPA Risk Assessment Guidelines. Regulatory Toxicology and Pharmacology, 29, 327-357.
http://dx.doi.org/10.1006/rtph.1999.1296
[46] Jaakkola, J.J. and Knight, T.L. (2008) The Role of Exposure to Phthalates from Polyvinyl Chloride Products in the Development of Asthma and Allergies: A Systematic Review and Meta-Analysis. Environmental Health Perspectives, 116, 845-853.
http://dx.doi.org/10.1289/ehp.10846
[47] Duty, S.M., Silva, M.J., Barr, D.B., Brock, J.W., Ryan, L., Chen, Z., Herrick, R.F., Christiani, D.C. and Hauser, R. (2003) Phthalate Exposure and Human Semen Parameters. Epidemiology, 14, 269-277.
http://dx.doi.org/10.1097/01.EDE.0000059950.11836.16
[48] Swan, S.H. (2008) Environmental Phthalate Exposure in Relation to Reproductive Outcomes and Other Health Endpoints in Humans. Environmental Research, 108, 177-184.
http://dx.doi.org/10.1016/j.envres.2008.08.007
[49] Sharpe, R.M. and Skakkebaek, N.E. (2008) Testicular Dysgenesis Syndrome: Mechanistic Insights and Potential New Downstream Effects. Fertility and Sterility, 89, e33-e38.
http://dx.doi.org/10.1016/j.fertnstert.2007.12.026
[50] Xu, X., Liu, X., Zhang, Q., Zhang, G., Lu, Y., Ruan, Q., Dong, F. and Yang, Y. (2013) Sex-Specific Effects of Bisphenol-A on Memory and Synaptic Structural Modification in Hippocampus of Adult Mice. Hormones and Behavior, 63, 766-775.
http://dx.doi.org/10.1016/j.yhbeh.2013.03.004
[51] Xu, X., Xie, L., Hong, X., Ruan, Q., Lu, H., Zhang, Q., Zhang, G. and Liu, X. (2013) Perinatal Exposure to Bisphenol-A Inhibits Synaptogenesis and Affects the Synaptic Morphological Development in Offspring Male Mice. Chemosphere, 91, 1073-1081.
http://dx.doi.org/10.1016/j.chemosphere.2012.12.065
[52] Elsworth, J.D., Jentsch, J.D., Vandevoort, C.A., Roth, R.H., Redmond Jr., D.E. and Leranth, C. (2013) Prenatal Exposure to Bisphenol A Impacts Midbrain Dopamine Neurons and Hippocampal Spine Synapses in Non-Human Primates. NeuroToxicology, 35, 113-120.
http://dx.doi.org/10.1016/j.neuro.2013.01.001
[53] Wang, X., Dong, Q., Chen, Y., Jiang, H., Xiao, Q., Wang, Y., Li, W., Bai, C., Huang, C. and Yang, D. (2013) Bisphenol A Affects Axonal Growth, Musculature and Motor Behavior in Developing Zebrafish. Aquatic Toxicology, 142-143, 104-113.
http://dx.doi.org/10.1016/j.aquatox.2013.07.011
[54] Chen, S.S., Hung, H.T., Chen, T.J., Hung, H.S. and Wang, D.C. (2013) Di-(2-ethylhexyl)-Phthalate Reduces MyoD and Myogenin Expression and Inhibits Myogenic Differentiation in C2C12 Cells. Journal of Toxicological Sciences, 38, 783-791.
http://dx.doi.org/10.2131/jts.38.783
[55] Neufeld, K.S. and Grow, W.A. (2011) Plastic Additives Decrease Myotube Formation and Agrin-Induced AChR Clustering in C2C12 Skeletal Muscle Cell Culture. American Osteopathic Association Conference, Orlando, 30 October 2011, 70.