AiM  Vol.5 No.3 , March 2015
Characterization of Egyptian Botrytis cinerea Isolates from Different Host Plants
Author(s) Hala Abdel Wahab*
ABSTRACT
Gray mold causes considerable economic losses of fruit and vegetable production. The current study on Egyptian population structure of Botrytis cinerea demonstrates that this species is composed of four TE genotypes: transposa, vacuma, boty and flipper types using transposable elements and sensitivity to the hydroxyanilide fungicide, fenhexamid. The results show that transposa is the predominant isolate type (63.6%) in the sampled populations of B. cinerea. However, the four isolate types are fenhexamid-sensitive regardless of location, host plant and plant organ. Additionally, B. cinerea isolates collected from different host plants do not exhibit any host preference using artificial infection test on lettuce. Furthermore, no relation is found between isolate type and aggressiveness and no divergence event has occurred among the isolates collected from different locations and host plants. The results suggest that host specialization of B. cinerea has not been occurred in the current sampled crops.

Cite this paper
Abdel Wahab, H. (2015) Characterization of Egyptian Botrytis cinerea Isolates from Different Host Plants. Advances in Microbiology, 5, 177-189. doi: 10.4236/aim.2015.53017.
References
[1]   Elad, Y., Williamson, B., Tudzynski, P. and Delen, N. (2007) Botrytis spp. and Diseases They Cause in Agricultural Systems—An Introduction. In: Elad, Y., Williamson, B., Tudzynski, P. and Delen, N., Eds., Botrytis: Biology, Pathology and Control. Springer, The Netherlands, 1-8.

[2]   Williamson, B., Tudzynski, B., Tudzynski, P. and Van Kan, J.A. (2007) Botrytis cinerea: The Cause of Grey Mould Disease. Molecular Plant Pathology, 8, 561-580.
http://dx.doi.org/10.1111/j.1364-3703.2007.00417.x

[3]   Dean, R., Van Kan, J.A., Pretorius, Z.A., Hammond-Kosack, K.E., Di Pietro, A., Spanu, P.D., Rudd, J.J., Dickman, M., Kahmann, R., Ellis, J. and Foster, G.D. (2012) The Top 10 Fungal Pathogens in Molecular Plant Pathology. Molecular Plant Pathology, 13, 414-430.
http://dx.doi.org/10.1111/j.1364-3703.2011.00783.x

[4]   Van Kan, J.A., Shaw, M.W. and Grant-Downton, R.T. (2014) Botrytis Species: Relentless Necrotrophic Thugs or Endophytes Gone Rogue? Molecular Plant Pathology, 15, 957-961.
http://dx.doi.org/10.1111/mpp.12148

[5]   Dufresne, M., Hua-Van, A., Abdel Wahab, H., Ben M’Barek, S., Vasnier, C., Teysset, L., Kema, G.H.J. and Daboussi, M.-J. (2007) Transposition of a Fungal Miniature Inverted-Repeat Transposable Element through the Action of a Tc1-Like Transposase. Genetics, 175, 441-452.
http://dx.doi.org/10.1534/genetics.106.064360

[6]   López-Berges, M.S., Di Pietro, A., Daboussi, M.-J., Abdel Wahab, H., Vasnier, C., Roncero, G., Dufresne, M. and Hera, C. (2009) Identification of Virulence Genes in Fusarium oxysporum f. sp. lycopersici by Large-Scale Transposon Tagging. Molecular Plant Pathology, 10, 95-107.
http://dx.doi.org/10.1111/j.1364-3703.2008.00512.x

[7]   Giraud, T., Fortini, D., Levis, C., Lamarque, C., Leroux, P., LoBuglio, K. and Brygoo, Y. (1999) Two Sibling Species of the Botrytis cinerea Complex, transposa and vacuma, Are Found in Sympatry on Numerous Host Plants. Phytopathology, 89, 967-973.
http://dx.doi.org/10.1094/PHYTO.1999.89.10.967

[8]   Munoz, G., Hinrichsen, P., Brygoo, Y. and Giraud, T. (2002) Genetic Characterisation of Botrytis cinerea Populations in Chile. Mycological Research, 106, 594-601.
http://dx.doi.org/10.1017/S0953756202005981

[9]   Ma, Z.H. and Michailides, T.J. (2005) Genetic Structure of Botrytis cinerea Populations from Different Host Plants in California. Plant Disease, 89, 1083-1089.
http://dx.doi.org/10.1094/PD-89-1083

[10]   Diolez, A., Marches, F., Fortini, D. and Brygoo, Y. (1995) Boty, a Long-Terminal-Repeat Retroelement in the Phytopathogenic Fungus Botrytis cinerea. Applied and Environmental Microbiology, 61, 103-108.

[11]   Levis, C., Fortini, D. and Brygoo, Y. (1997) Flipper, a Mobile Fot1-Like Transposable Element in Botrytis cinerea. Molecular and General Genetics, 254, 674-680.
http://dx.doi.org/10.1007/s004380050465

[12]   Martinez, F., Blancard, D., Lecomte, P., Levis, C., Dubos, B. and Fermaud, M. (2003) Phenotypic Differences between vacuma and transposa Subpopulations of Botrytis cinerea. European Journal of Plant Pathology, 109, 479-488.
http://dx.doi.org/10.1023/A:1024222206991

[13]   Albertini, C., Thebaud, G., Fournier, E. and Leroux, P. (2002) Eburicol 14α-Demethylase Gene (CYP51) Polymorphism and Speciation in Botrytis cinerea. Mycological Research, 106, 1171-1178.
http://dx.doi.org/10.1017/S0953756202006561

[14]   Fournier, E., Levis, C., Fortini, D., Leroux, P., Giraud, T. and Brygoo, Y. (2003) Characterization of Bc-hch, the Botrytis cinerea Homolog of the Neurospora crassahet-c Vegetative Incompatibility Locus, and Its Use as a Population Marker. Mycologia, 95, 251-261.
http://dx.doi.org/10.2307/3762036

[15]   ben Ahmed, D. and Hamada, W. (2005) Genetic Diversity of Some Tunisian Botrytis cinerea Isolates Using Molecular Markers. Phytopathologia Mediterranea, 44, 300-306.

[16]   Milicevic, T., Topolovec-Pintaric, S., Cvjetkovic, B., Ivic, D. and Duralija, B. (2006) Sympatric Subpopulations of Botrytis cinerea on Strawberries Based on the Content of Transposable Elements and Their Connection with Resistance to Botryticides. Acta Horticulturae, 708, 115-118.

[17]   Isenegger, D., Ades, P., Ford, R. and Taylor, P. (2008) Status of the Botrytis cinerea Species Complex and Microsatellite Analysis of Transposon Types in South Asia and Australia. Fungal Diversity, 29, 17-26.

[18]   Rajaguru, B. and Shaw, M.W. (2010) Genetic Differentiation between Hosts and Locations in Populations of Latent Botrytis cinerea in Southern England. Plant Pathology, 59, 1081-1090.
http://dx.doi.org/10.1111/j.1365-3059.2010.02346.x

[19]   Esterio, M., Munoz, G., Ramos, C., Cofré, G., Estévez, R., Salinas, A. and Auger, J. (2011) Characterization of Botrytis cinerea Isolates Present in Thompson Seedless Table Grapes in the Central Valley of Chile. Plant Disease, 95, 683-690.
http://dx.doi.org/10.1094/PDIS-04-10-0298

[20]   Fournier, E., Giraud, T., Loiseau, A., Vautrin, D., Estoup, A., Solignac, M., Cornuet, J.M. and Byrgoo, Y. (2002) Characterization of Nine Polymorphic Microsatellite Loci in the Fungus Botrytis cinerea (Ascomycota). Molecular Ecology Notes, 2, 253-255.
http://dx.doi.org/10.1046/j.1471-8286.2002.00207.x

[21]   Leroux, P., Fritz, R., Debieu, D., Albertini, C., Lanen, C., Bach, J., Gredt, M. and Chapeland, F. (2002) Mechanisms of Resistance to Fungicides in Field Strains of Botrytis cinerea. Pest Management Science, 58, 876-888.
http://dx.doi.org/10.1002/ps.566

[22]   Jarvis, W.R. (1980) Epidemiology. In: Coley-Smith, J.R., Verhoeff, K. and Jarvis, W.R., Eds., The Biology of Botrytis, Academic Press, London, 219-250.

[23]   Lorbeer, J.W. (1980) Variation in Botrytis and Botryotinia. In: Coley-Smith, J.R., Verhoeff, K. and Jarvis, W.R., Eds., The Biology of Botrytis, Academic Press, London, 19-40.

[24]   Abdel Wahab, H. and Younis, R.A. (2012) Early Detection of Gray Mold in Grape Using Conventional and Molecular Methods. African Journal of Biotechnology, 11, 15251-15257.

[25]   Abdel Wahab, H. and Helal, N.S. (2013) Evaluation of Pre-Harvest Bioagent Applications for both Production and Biological Control of Onion and Strawberry Plants under Natural Botrytis Infections. African Journal of Plant Science and Biotechnology, 7, 64-69.

[26]   IBM (2011) IBM SPSS Statistics for Windows, Version 20. IBM Corp., Armonk.

[27]   White, T.J., Bruns, T., Lee, S. and Taylor, J. (1990) Amplification and Direct Sequencing of Fungal Ribosomal RNA Genes for Phylogenetics. In: Innis, M.A., Gelfand, D.H., Sninsky, J.J. and White, T.J., Eds., PCR Protocols: A Guide to Methods and Applications, Academic Press, San Diego, 315-322.
http://dx.doi.org/10.1016/B978-0-12-372180-8.50042-1

[28]   Hall, T.A. (1999) BioEdit: A User-Friendly Biological Sequence Alignment Editor and Analysis Program for Windows 95/98/NT. Nucleic Acids Symposium Series, 41, 95-98.

[29]   Fitch, W. (1971) Rate of Change of Concomitantly Variable Codons. Journal of Molecular Evolution, 1, 84-96.
http://dx.doi.org/10.1007/BF01659396

[30]   Swofford, D. (2002) PAUP* Version 4.0. Phylogenetic Analysis Using Parsimony (and Other Methods). Sinauer Associates, Inc., Sunderland.

[31]   Ronquist, F. and Huelsenbeck, J.P. (2003) MrBayes 3: Bayesian Phylogenetic Inference under Mixed Models. Bioinformatics, 19, 1572-1574.
http://dx.doi.org/10.1093/bioinformatics/btg180

[32]   Posada, D. (2008) jModelTest: Phylogenetic Model Averaging. Molecular Biology and Evolution, 25, 1253-1256.
http://dx.doi.org/10.1093/molbev/msn083

[33]   Guindon, S. and Gascuel, O. (2003) A Simple, Fast, and Accurate Algorithm to Estimate Large Phylogenies by Maximum Likelihood. Systematic Biology, 52, 696-704.
http://dx.doi.org/10.1080/10635150390235520

[34]   Rambaut, A. and Drummond, A. (2007) Tracer v1.4 (Internet).
http://tree.bio.ed.ac.uk/software/tracer/

[35]   Stover, B.C. and Müller, K.F. (2010) TreeGraph 2: Combining and Visualizing Evidence from Different Phylogenetic Analyses. BMC Bioinformatics, 11, 7.
http://dx.doi.org/10.1186/1471-2105-11-7

[36]   Tamura, K., Peterson, D., Peterson, N., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739.
http://dx.doi.org/10.1093/molbev/msr121

[37]   Samuel, S., Veloukas, T., Papavasileiou, A. and Karaoglanidis, G.S. (2012) Differences in Frequency of Transposable Elements Presence in Botrytis cinerea Populations from Several Hosts in Greece. Plant Disease, 96, 1286-1290.
http://dx.doi.org/10.1094/PDIS-01-12-0103-RE

[38]   Leroux, P., Chapeland, F., Desbrosses, D. and Gredt, M. (1999) Patterns of Cross-Resistance to Fungicides in Botryotinia fuckeliana (Botrytis cinerea) Isolates from French Vineyards. Crop Protection, 18, 687-697.
http://dx.doi.org/10.1016/S0261-2194(99)00074-5

[39]   Ziogas, B., Markoglou, A. and Malandrakis, A. (2003) Studies on the Inherent Resistance Risk to Fenhexamid in Botrytis cinerea. European Journal of Plant Pathology, 109, 311-317.
http://dx.doi.org/10.1023/A:1023522213675

[40]   Fekete, é., Fekete, E., Irinyi, L., Karaffa, L., árnyasi, M., Asadollahi, M. and Sándor, E. (2012) Genetic Diversity of a Botrytis cinerea Cryptic Species Complex in Hungary. Microbiological Research, 167, 283-291.
http://dx.doi.org/10.1016/j.micres.2011.10.006

[41]   Fillinger, S., Leroux, P., Auclair, C., Barreau, C., Al Hajj, C. and Debieu, D. (2008) Genetic Analysis of Fenhexamid-Resistant Field Isolates of the Phytopathogenic Fungus Botrytis cinerea. Antimicrobial Agents and Chemotherapy, 52, 3933-3940.
http://dx.doi.org/10.1128/AAC.00615-08

[42]   Kretschmer, M., Leroch, M., Mosbach, A., Walker, A.S., Fillinger, S., Mernke, D., Schoonbeek, H.J., Pradier, J.M., Leroux, P., De Waard, M.A. and Hahn, M. (2009) Fungicide-Driven Evolution and Molecular Basis of Multidrug Resistance in Field Populations of the Grey Mould Fungus Botrytis cinerea. PLoS Pathogens, 5, e1000696.
http://dx.doi.org/10.1371/journal.ppat.1000696

[43]   Amiri, A., Heath, S. and Peres, N. (2013) Phenotypic Characterization of Multifungicide Resistance in Botrytis cinerea Isolates from Strawberry Fields in Florida. Plant Disease, 97, 393-401.
http://dx.doi.org/10.1094/PDIS-08-12-0748-RE

[44]   Schumacher, J., Gautier, A., Morgant, G., Studt, L., Ducrot, P.H., Pecheur, P.L., Azeddine, S., Fillinger, S., Leroux, P., Tudzynski, B. and Viaud, M. (2013) A Functional Bikaverin Biosynthesis Gene Cluster in Rare Strains of Botrytis cinerea Is Positively Controlled by VELVET. PLoS ONE, 8, e53729.
http://dx.doi.org/10.1371/journal.pone.0053729

[45]   Martinez, F., Dubos, B. and Fermaud, M. (2005) The Role of Saprotrophy and Virulence in the Population Dynamics of Botrytis cinerea in Vineyards. Phytopathology, 95, 692-700.
http://dx.doi.org/10.1094/PHYTO-95-0692

[46]   Martinez, F., Corio-Costet, M.F., Levis, C., Coarer, M. and Fermaud, M. (2008) New PCR Primers Applied to Characterize Distribution of Botrytis cinerea Populations in French Vineyards. Vitis, 47, 217-226.

[47]   Váczy, K.Z., Sándor, E., Karaffa, L., Fekete, E., Fekete, é., árnyasi, M., Czeglédi, L., Kovics, G.J., Druzhinina, I.S. and Kubicek, C.P. (2008) Sexual Recombination in the Botrytis cinerea Populations in Hungarian Vineyards. Phytopathology, 98, 1312-1319.
http://dx.doi.org/10.1094/PHYTO-98-12-1312

[48]   Rodríguez, A., Acosta, A. and Rodríguez, C. (2014) Fungicide Resistance of Botrytis cinerea in Tomato Greenhouses in the Canary Islands and Effectiveness of Non-Chemical Treatments against Gray Mold. World Journal of Microbiology and Biotechnology, 30, 2397-2406.
http://dx.doi.org/10.1007/s11274-014-1665-5

[49]   Walker, A.S., Gautier, A.L., Confais, J., Martinho, D., Viaud, M., Pecheur, P.L., Dupont, J. and Fournier, E. (2011) Botrytis pseudocinerea, a New Cryptic Species Causing Gray Mold in French Vineyards in Sympatry with Botrytis cinerea. Phytopathology, 101, 1433-1445.
http://dx.doi.org/10.1094/PHYTO-04-11-0104

[50]   Albertini, C. and Leroux, P. (2004) A Botrytis cinerea Putative 3-keto Reductase Gene (ERG27) that Is Homologous to the Mammalian 17β-Hydroxysteroid Dehydrogenase Type 7 Gene (17β-HSD7). European Journal of Plant Pathology, 110, 723-733.
http://dx.doi.org/10.1023/B:EJPP.0000041567.94140.05

[51]   Leroux, P., Gredt, M., Leroch, M. and Walker, A.S. (2010) Exploring Mechanisms of Resistance to Respiratory Inhibitors in Field Strains of Botrytis cinerea, the Causal Agent of Gray Mold. Applied and Environmental Microbiology, 76, 6615-6630.
http://dx.doi.org/10.1128/AEM.00931-10

[52]   Asadollahi, M., Fekete, E., Karaffa, L., Flipphi, M., árnyasi, M., Esmaeili, M., Váczy, K.Z. and Sándor, E. (2013) Comparison of Botrytis cinerea Populations Isolated from Two Open-Field Cultivated Host Plants. Microbiological Research, 168, 379-388.
http://dx.doi.org/10.1016/j.micres.2012.12.008

[53]   Giraud, T., Fortini, D., Levis, C., Leroux, P. and Brygoo, Y. (1997) RFLP Markers Show Genetic Recombination in Botryotinia fuckeliana (Botrytis cinerea) and Transposable Elements Reveal Two Sympatric Species. Molecular Biology and Evolution, 14, 1177-1185.
http://dx.doi.org/10.1093/oxfordjournals.molbev.a025727

[54]   Wu, M., Zhang, L., Li, G., Jiang, D., Hou, M. and Huang, H.C. (2007) Hypovirulence and Double-Stranded RNA in Botrytis cinerea. Phytopathology, 97, 1590-1599.
http://dx.doi.org/10.1094/PHYTO-97-12-1590

[55]   Pearson, M.N. and Bailey, A.M. (2013) Viruses of botrytis. Advances in Virus Research, 86, 249-272.
http://dx.doi.org/10.1016/B978-0-12-394315-6.00009-X

[56]   Kecskeméti, E., Brathuhn, A., Kogel, K.H., Berkelmann-Lohnertz, B. and Reineke, A. (2014) Presence of Transposons and Mycoviruses in Botrytis cinerea Isolates Collected from a German Grapevine Growing Region. Journal of Phytopathology, 162, 582-595.
http://dx.doi.org/10.1111/jph.12230

[57]   McDonald, B.A. and Linde, C. (2002) Pathogen Population Genetics, Evolutionary Potential, and Durable Resistance. Annual Review of Phytopathology, 40, 349-379.
http://dx.doi.org/10.1146/annurev.phyto.40.120501.101443

[58]   Fournier, E. and Giraud, T. (2008) Sympatric Genetic Differentiation of a Generalist Pathogenic Fungus, Botrytis cinerea, on Two Different Host Plants, Grapevine and Bramble. Journal of Evolutionary Biology, 21, 122-132.

[59]   Vos, P., Hogers, R., Bleeker, M., Reijans, M., van de Lee, T., Hornes, M., Frijters, A., Pot, J., Peleman, J., Kuiper, M. and Zabeau, M. (1995) AFLP: A New Technique for DNA Fingerprinting. Nucleic Acids Research, 23, 4407-4414.
http://dx.doi.org/10.1093/nar/23.21.4407

[60]   Majer, D., Mithen, R., Lewis, B.G., Vos, P. and Oliver, R.P. (1996) The Use of AFLP Fingerprinting for the Detection of Genetic Variation in Fungi. Mycological Research, 100, 1107-1111.
http://dx.doi.org/10.1016/S0953-7562(96)80222-X

[61]   Narum, S.R., Buerkle, C.A., Davey, J.W., Miller, M.R. and Hohenlohe, P.A. (2013) Genotyping-by-Sequencing in Ecological and Conservation Genomics. Molecular Ecology, 22, 2841-2847.
http://dx.doi.org/10.1111/mec.12350

 
 
Top