Back
 OPJ  Vol.5 No.3 , March 2015
Design of Environmental Biosensor Based on Photonic Crystal Fiber with Bends Using Finite Element Method
Abstract: In this paper, a biosensor based on photonic crystal fiber (PCF) is proposed and designed using Full-Vectorial Finite Element Method (FVFEM). The proposed PCF sensor consists of three concentric circles surrounding the core. The key optical sensor characteristics such as sensitivity, the field profiles and real part of the refractive index of the proposed PCF structure are investigated by employing the FVFEM. The proposed sensor can be deployed for environmental sensing when the PCF active region is filled with either analytes such as liquids or gas. By careful selection of the design parameters such as the radius of the sensing circle, the diameter of air holes in the core region and hole to hole spacing, Λ, the sensitivity analytes is determined. Our simulation results show that, the electric field distribution is primary localized in the third concentric circle with a radius of 16 μm. Effects of PCF bending on the sensitivity is also studied and reported.
Cite this paper: Haxha, S. , Teyeb, A. , Malek, F. , Akowuah, E. and Dayoub, I. (2015) Design of Environmental Biosensor Based on Photonic Crystal Fiber with Bends Using Finite Element Method. Optics and Photonics Journal, 5, 69-78. doi: 10.4236/opj.2015.53006.
References

[1]   Petropoulos, P., Monro, T.M. and Belardi, W. (2001) 2R-Regenerative All-Optical Switch Based on a Highly Nonlinear Holey Fiber. Optics Letters, 26, 1233-1235.
http://dx.doi.org/10.1364/OL.26.001233

[2]   Knight, J.C. (2003) Photonic Crystal Fibres. Nature, 424, 847-851.
http://dx.doi.org/10.1038/nature01940

[3]   Koshiba, M. and Saitoh, K. (2004) Applicability of Classical Optical Fiber Theories to Holey Fibers’. Optics Letters, 29, 1739-1741.
http://dx.doi.org/10.1364/OL.29.001739

[4]   Chao, C.-Y., Fung, W. and Guo, L.J. (2006) Polymer Microring Resonators for Biochemical Sensing Applications. IEEE Journal of Selected Topics in Quantum Electronics, 12, 134-142.
http://dx.doi.org/10.1109/JSTQE.2005.862945

[5]   Afshar, Sh.V., Warren-Smith, S.C. and Monro, T.M. (2007) Enhancement of Fluorescence-Based Sensing Using Microstructured Optical Fibres. Optics Express, 15, 17891-17901.
http://dx.doi.org/10.1364/OE.15.017891

[6]   Villatoro, J., Minkovich, V.P., Pruneri, V. and Badenes. G. (2007) Simple All-Microstructured-Optical-Fiber Interferometer Built via Fusion Splicing. Optics Express, 15, 1491-1496.
http://dx.doi.org/10.1364/OE.15.001491

[7]   Choi, H., Kee, C., Hong, K., Sung, J., Kim, S., Ko, D., Lee, J., Kim, J. and Park, H.Y. (2007) Dispersion and Birefringence of Irregularly Microstructured Fiber with an Elliptic Core. Applied Optics, 46, 8493-8498.
http://dx.doi.org/10.1364/AO.46.008493

[8]   Kaijage, S.F., Namihira, Y., Begum, F., Hai, N.H., Razzak, S.M.A., Miyagi, T., Nozaki, K. and Zou. S. (2009) Highly Nonlinear and Polarization Maintaining Octagonal Photonic Crystal Fiber in 1000nm Region. The 14th OptoElectronics and Communications Conference, OECC, Hong Kong.

[9]   Gao, M.Y., Jiang, C. and Hu, W.S. (2005) Dual-Pump Broadband Fiber Optical Parametric Amplifier with a Three-Section Photonic Crystal Fiber Scheme. SPIE, Nanofabrication: Technologies, Devices, and Applications, 5623, 300-307.

[10]   Monro, T.M., Richardson, D.J. and Bennett, P.J. (1999) Developing Holey Fibres for Evanescent Field Devices. Electronics Letters, 35, 1188-1189.
http://dx.doi.org/10.1049/el:19990780

[11]   Monro, T.M., Belardi, W., Furusawa, K., Baggett, J.C., Broderick, N.G.R. and Richardson, D.J. (2001) Sensing with Microstructured Optical Fibres. Measurement Science and Technology, 12, 854-858.
http://dx.doi.org/10.1088/0957-0233/12/7/318

[12]   Hoo, Y.L., Jin, W., Ho, H.L., Wang, D.N. and Winder, R.S. (2002) Evanescent-Wave Gas Sensing Using Microstructure Fiber. SPIE, Optical Engineering, 41, 8-9.
http://dx.doi.org/10.1117/1.1429930

[13]   Hoo, Y.L., Jin, W., Shi, C., Ho, H.L., Wang, D.N. and Ruan, S.C. (2003) Design and Modeling of a Photonic Crystal Fiber Gas Sensor. Applied Optics, 42, 3509-3515.
http://dx.doi.org/10.1364/AO.42.003509

[14]   Pickrell, G., Peng, W. and Wang, A. (2004) Random-Hole Optical Fiber Evanescent-Wave Gas Sensing. Optics Letters, 29, 1476-1478.
http://dx.doi.org/10.1364/OL.29.001476

[15]   Gooding, J.J. (2006) Biosensor Technology for Detecting Biological Warfare Agents: Recent Progress and Future Trends. Analytica Chimica Acta, 559, 137-151.
http://dx.doi.org/10.1016/j.aca.2005.12.020

[16]   Hassani, A. and Skorobogatiy, M. (2009) Photonic Crystal Fiber-Based Plasmonic Sensors for the Detection of Biolayer Thickness. Journal of the Optical Society of America B, 26, 1550-1557.
http://dx.doi.org/10.1364/JOSAB.26.001550

[17]   Guo, Y., Divin, Ch., Myc, A., Terry, F.L., Baker, R.J., Norris, T.B. and Ye, J.Y. (2008) Sensitive Molecular Binding Assay Using a Photonic Crystal Structure in Total Internal Reflection. Optics Express, 16, 11741-11749.

[18]   Kretschmann, E. and Raether, H. (1968) Radiative Decay of Nonradiative Surface Plasmons Excited by Light. Zeitschrift für Naturforschung A, 23, 2135-2136.
http://dx.doi.org/10.1515/zna-1968-1247

[19]   Akowuah, E.K., Gorman, T. and Haxha, S. (2009) Design and Optimization of a Novel Surface Plasmon Resonance Biosensor Based on Otto Configuration. Optics Express, 17, 23511-23521.
http://dx.doi.org/10.1364/OE.17.023511

[20]   Haxha, S. and Ademgil, H. (2008) Novel Design of Photonic Crystal Fibres with Low Confinement Losses, Nearly Zero Ultra-Flatted Chromatic Dispersion, Negative Chromatic Dispersion and Improved Effective Mode Area. Optics Communications, 281, 278-286.
http://dx.doi.org/10.1016/j.optcom.2007.09.041

[21]   Akowuah, E.K., Gorman, T., Haxha, S. and Oliver, J.V. (2010) Dual Channel Planar Waveguide Surface Plasmon Resonance Biosensor for an Aqueous Environment. Optics Express, 18, 24412-24422.
http://dx.doi.org/10.1364/OE.18.024412

[22]   Markos, C., Antonopoulos, G. and Kakarantzas, G. (2013) Broadband Guidance in a Hollow-Core Photonic Crystal Fiber with Polymer-Filled Cladding. IEEE Photonics Technology Letters, 25, 2003-2006.
http://dx.doi.org/10.1109/LPT.2013.2280817

[23]   Wadsworth, W., Knight, J. and Birks, T. (2012) State-of-the-Art Photonic Crystal Fiber. Optics and Photonics News, 23, 24-31.
http://dx.doi.org/10.1364/OPN.23.3.000024

[24]   Shi, J.D., Feng, X., Lian, Z., White, N., Loh, W.H., Poletti, F. and Horak, P. (2014) Fabrication of Multiple Parallel Suspended-Core Optical Fibers by Sheet-Stacking. Optical Fiber Technology, 20, 395-402.
http://dx.doi.org/10.1016/j.yofte.2014.04.006

[25]   Wheeler, N.V., Heidt, A.M., Baddela, N.K., Fokoua, E.N., Hayes, J.R., Sandoghchi, S.R., Poletti, F., Petrovich, M.N. and Richardson, D.J. (2014) Low-Loss and Low-Bend-Sensitivity-Mid-Infrared Guidance in a Hollow-Core Photonic-Bandgap Fiber. Optics Letters, 39, 295-298.
http://dx.doi.org/10.1364/OL.39.000295

[26]   Cordeiro, C.M.B., Franco, M.A.R., Chesini, G., Barretto, E.C.S., Lwin, R., Brito Cruz, C.H. and Large, M.C.J. (2006) Microstructured-Core Optical Fibre for Evanescent Sensing Applications. Optics Express, 14, 13056-13066.

[27]   Vu, N.H., Hwang, I.K. and Lee, Y.H. (2008) Bending Loss Analyses of Photonic Crystal Fibers Based on the Finite-Difference Time-Domain Method. Optics Letters, 33, 119-121.
http://dx.doi.org/10.1364/OL.33.000119

[28]   Jensen, J., Hoiby, P., Emiliyanov, G., Bang, O., Pedersen, L.H. and Bjarklev, A. (2005) Selective Detection of Antibodies in Microstructured Polymer Optical Fibers. Optics Express, 13, 5883-5889.
http://dx.doi.org/10.1364/OPEX.13.005883

[29]   Martelli, C., Canning, J., Lyytikainen, K. and Groothoff, N. (2005) Water-Core Fresnel Fiber. Optics Express, 13, 3890-3895.
http://dx.doi.org/10.1364/OPEX.13.003890

 
 
Top