Back
 JCC  Vol.3 No.3 , March 2015
Planar Dual-Band Electrically Small Antenna Based on Double-Negative Metamaterials
Abstract: A coaxially fed dual-band electrically small antenna based on double-negative metamaterials is presented in this letter. The antenna consists of a microstrip patch antenna as driven element and a double-negative metamaterials shell as parasitic element. Nearly complete matching of the entire system to a 50 Ω source without any matching network is achieved at 299 MHz and 837 MHz, with ka = 0.444 and 1.242 respectively. Measured performance agrees with simulations, and the proposed antenna has considerable radiation efficiency and is suitably employed for VHF and UHF applications.
Cite this paper: Zhou, C. , Wang, G. and Xiao, Y. (2015) Planar Dual-Band Electrically Small Antenna Based on Double-Negative Metamaterials. Journal of Computer and Communications, 3, 27-34. doi: 10.4236/jcc.2015.33005.
References

[1]   Chu, L.J. (1948) Physical Limitations of Omnidirectional Antennas. J. Appl. Phys, 19, 1163-1175. http://dx.doi.org/10.1063/1.1715038

[2]   Wheeler, H.A. (1947) Fundamental Limitations of Small Antennas. IRE Proc., 35, 1479-1484.

[3]   Wheeler, H.A. (1959) The Radiansphere Around a Small Antenna. IRE Proc., 47, 1325-1331.

[4]   Wheeler, H.A. (1975) Small Antennas. IEEE. Trans. Antennas Propag, AP-23.

[5]   Best, S.R. (2005) Low Q Electrically Small Linear and Elliptical Polarized Spherical Dipole Antennas. IEEE. Trans. Antennas Propag., 53, 1047-1053. http://dx.doi.org/10.1109/TAP.2004.842600

[6]   Ziolkowski, R.W., Jin, P. and Lin, C.-C. (2011) Metamaterial-Inspired Engineering of Antennas. Proc. IEEE, 99, 1720-1731. http://dx.doi.org/10.1109/JPROC.2010.2091610

[7]   Erentok, A. and Ziolkowski, R.W. (2007) An Efficient Metamaterial-inspired Electrically-Small Antenna. Microw. Opt. Tech. Lett., 49, 1287-1290.

[8]   Erentok, A. and Ziolkowski, R.W. (2007) Two-Dimensional Efficient Metamaterial-Inspired Electrically-Small Antenna. Microw. Opt. Tech. Lett., 49, 1669-1673.

[9]   Erentok, A. and Ziolkowski, R.W. (2008) Metamaterial-Inspired Efficient Electrically Small Antennas. IEEE. Trans. Antennas Propag., 56, 691-707. http://dx.doi.org/10.1109/TAP.2008.916949

[10]   Ziolkowski, R.W. (2008) Efficient Electrically Small Antenna Facilitated by a Near-Field Resonant Parasitic. IEEE Antennas Wireless Propag. Lett., 7, 580-583. http://dx.doi.org/10.1109/LAWP.2008.2000558

[11]   Ziolkowski, R.W. (2008) An Efficient, Electrically Small Antenna Designed for VHF and UHF Applications. IEEE Antennas Wireless Propag. Lett., 7, 217-220. http://dx.doi.org/10.1109/LAWP.2008.921635

[12]   Ziolkowski, R.W., Lin, C.-C., Nielsen, J.A., Tanielian, M.H. and Holloway, C.L. (2009) Design and Experimental Verification of a 3D Magnetic EZ Antenna at 300 MHz. IEEE Antennas Wireless Propag. Lett., 8, 989-993. http://dx.doi.org/10.1109/LAWP.2009.2029708

[13]   Ziolkowski, R.W., Jin, P., Nielsen, J.A., Tanielian, M.H. and Holloway, C.L. (2009) Experimental Verification of Z Antennas at UHF Frequencies. IEEE Antennas Wireless Propag. Lett., 8, 1329-1333. http://dx.doi.org/10.1109/LAWP.2009.2038180

[14]   Jin, P. and Ziolkowski, R.W. (2009) Low Q, Electrically Small, Efficient Near-Field esonant Parasitic Antennas. IEEE. Trans. Antennas Propag., 57, 2548-2563. http://dx.doi.org/10.1109/TAP.2009.2027162

[15]   Jin, P. and Ziolkowski, R.W. (2010) Broadband, Efficient, Electrically Small Metamaterial-Inspired Antennas Facilitated by Active Near-Field Resonant Parasitic Elements. IEEE. Trans. Antennas Propag., 58, 318-327. http://dx.doi.org/10.1109/TAP.2009.2037708

[16]   Lin, C.-C., Ziolkowski, R.W., Nielsen, J.A., Tanielian, M.H. and Holloway, C.L. (2010) An Efficient, Low Profile, Electrically Small, Three-Dimensional, Very High Frequency Magnetic EZ Antenna. Appl. Phys. Lett., 96, Article ID: 104102. http://dx.doi.org/10.1063/1.3357430

[17]   Lin, C.-C., Jin, P., Ziolkowski, R.W. (2011) Multi-Functional, Magnetically-Coupled, Electrically Small, Near-Field Resonant Parasitic Wire Antennas. IEEE. Trans. Antennas Propag., 59, 691-707.

[18]   Jin, P. and Ziolkowski, R.W. (2011) Multi-Frequency, Linear and Circular Polarized, Metamaterial-Inspired, Near- Field Resonant Parasitic Antennas. IEEE. Trans. Antennas Propag., 59, 1446-1459.

[19]   Tang, M.-C. and Ziolkowski, R.W. (2013) Efficient, High Directivity, Large Front-to-Back-Ratio, Electrically Small, Near-Field-Resonant-Parasitic Antenna. IEEE Access, 1, 16-28. http://dx.doi.org/10.1109/ACCESS.2013.2259134

[20]   Zhu, N. and Ziolkowski, R.W. (2012) Broad-Bandwidth, Electrically Small Antenna Augmented With an Internal Non-Foster Element. IEEE Antennas Wireless Propag. Lett., 11, 1116-1120. http://dx.doi.org/10.1109/LAWP.2012.2219572

[21]   Jin, P., Lin, C.-C. and Ziolkowski, R.W. (2012) Multifunctional, Electrically Small, Planar Near-Field Resonant Parasitic Antennas. IEEE Antennas Wireless Propag. Lett., 11, 200-204. http://dx.doi.org/10.1109/LAWP.2012.2187322

[22]   Jin, P. and Ziolkowski, R.W. (2012) High-Directivity, Electrically Small, Low-Profile Near-Field Resonant Parasitic Antennas. IEEE Antennas Wireless Propag. Lett., 11, 305-309. http://dx.doi.org/10.1109/LAWP.2012.2190030

[23]   Tang, M.-C., Zhu, N. and Ziolkowski, R.W. (2013) Augmenting a Modified Egyptian Axe Dipole Antenna With Non-Foster Elements to Enlarge Its Directivity Bandwidth. IEEE Antennas Wireless Propag. Lett., 12, 421-424. http://dx.doi.org/10.1109/LAWP.2013.2254103

[24]   Zhu, N. and Ziolkowski, R.W. (2012) Design and Measurements of an Electrically Small, Broad Bandwidth, Non-Foster Circuit-Augmented Protractor Antenna. Appl. Phys. Lett., 101, Article ID: 024107. http://dx.doi.org/10.1063/1.4736996

 
 
Top