JCC  Vol.3 No.3 , March 2015
Minimal Generalized Time-Bandwidth Product Method for Estimating the Optimum Fractional Fourier Order
Author(s) Lin Tian1,2, Zhenming Peng1
Abstract

A minimal generalized time-bandwidth product-based coarse-to-fine strategy is proposed with one novel ideas highlighted: adopting a coarse-to-fine strategy to speed up the searching process. The simulation results on synthetic and real signals show the validity of the proposed method.


Cite this paper
Tian, L. , Peng, Z. (2015) Minimal Generalized Time-Bandwidth Product Method for Estimating the Optimum Fractional Fourier Order. Journal of Computer and Communications, 3, 8-12. doi: 10.4236/jcc.2015.33002.
References

[1]   Akan, A., Shakhmurov, V. and Cekic, Y. (2001) A Fractional Gabor Transform. IEEE International Conference on Acoustics, Speech, and Signal Processing, (ICASSP'01), Salt Lake City, 7-11 May 2001, Vol. 6, 3529-3532.

[2]   Zhang, Y., Gu, B.Y., Dong, B.Z., et al. (1997) Fractional Gabor Transform. Optics Letters, 22, 1583-1585. http://dx.doi.org/10.1364/OL.22.001583

[3]   Akan, A. and Çekiç, Y. (2003) A Fractional Gabor Expansion. Journal of the Franklin Institute, 340, 391-397. http://dx.doi.org/10.1016/j.jfranklin.2003.08.004

[4]   Pei, S.C. and Ding, J.J. (2007) Relations between Gabor Transforms and Fractional Fourier Transforms and Their Applications for Signal Processing. IEEE Transactions on Signal Processing, 55, 4839-4850. http://dx.doi.org/10.1109/TSP.2007.896271

[5]   Durak, L. and Arikan, O. (2003) Short-Time Fourier Transform: Two Fundamental Properties and an Optimal Implementation. IEEE Transactions on Signal Processing, 51, 1231-1242. http://dx.doi.org/10.1109/TSP.2003.810293

[6]   Chen, Y.P., Peng, Z.M., He, Z.H., Tian, L. and Zhang, D.J. (2013) The Optimal Fractional Gabor Transform Based on the Adaptive Window Function and Its Application. Applied Geo-physics, 10, 305-313. http://dx.doi.org/10.1007/s11770-013-0392-2

[7]   Zheng, L. and Shi, D. (2010) Maximum Amplitude Method for Estimating Compact Fractional Fourier Domain. IEEE Signal Processing Letters, 17, 293-296. http://dx.doi.org/10.1109/LSP.2009.2038511

[8]   Guan, J., Chen, X.L., Huang, Y. and He, Y. (2012) Adaptive Fractional Fourier Transform-Based Detection Algorithm for Moving Target in Heavy Sea Clutter. IET Radar, Sonar and Navigation, 6, 389-401. http://dx.doi.org/10.1049/iet-rsn.2011.0030

[9]   Almeida, L.B. (1994) The Fractional Fourier Transform and Time-Frequency Representations. IEEE Transactions on Signal Processing, 42, 3084-3091. http://dx.doi.org/10.1109/78.330368

[10]   Ozaktas, H.M., et al. (1996) Digital Computation of the Fractional Fourier Transform. IEEE Transactions on Signal Processing, 44, 2141-2150. http://dx.doi.org/10.1109/78.536672

[11]   Tian, L. and Peng, Z. (2014) Determining the optimal Order of Fractional Gabor Transform Based on Kurtosis Maximization and Its Application. Journal of Applied Geophysics, 108, 152-158. http://dx.doi.org/10.1016/j.jappgeo.2014.06.009

 
 
Top