Back
 OJF  Vol.5 No.3 , March 2015
Organic Carbon Storage in Evergreen Oak Forest Ecosystems of the Middle and High Moroccan Atlas Areas
Abstract: We report carbon stock in biomass, litter and soil estimated for six locations in natural Quercus ilex L. stands of the Middle and High Moroccan Atlas. Twenty trees at each location were selected according to their diameter classes and felled to measure the biomass of trunk, branches, twigs and leaves and determine allometric relationships. Soil was sampled in five depths (0 - 15, 15 - 30, 30 - 50, 50 - 70 and 70 - 100 cm) and litterfall production measured in all tree stands. The total carbon stock in above-ground biomass ranged between 17 Mg·haǃ in Aït Aamar stand (High Atlas) and 91 Mg·haǃ in Ksiba stand (Middle Atlas). Perennial organs (trunk, branches and twigs) stored over 95% of the tree carbon stock. Soil organic carbon concentrations ranged from 0.01% (in 70 - 100 cm in all stands) to 8.1% (in 0 - 15 cm in the Ajdir stand in Middle Atlas). The total organic carbon stock in the soil ranged between 141.4 t·haǃ in Ajdir and 24.6 t·haǃ in Asloul. The litter contained 0.2 Mg C haǃ in the clearing (C2) stand of High Atlas and 14.3 Mg C haǃ in (Ajdir) of carbon. The best fitted model for predicting carbon stock in tree biomass was obtained by applying the allometric equation Y = aXb for each biomass fraction and stand, where Y is the aboveground biomass (dry weight) and X is the DBH (Mean diameter at breast height, 1.30 m). These previous data obtained in the present study confirm the important function of these natural forests as longterm C sinks, in forest biomass, litter and soil. The potential long term C storage of these systems is moderately high, especially in less-intensively managed forests that include large trees. The established relationship between DBH and carbon stock in different tree organs can be used for forest carbon accounting, and also synthesize available information on oak forest as a sink for atmospheric CO2, and identify the management options that may enhance the capacity for C capture/ storage in forest soils.
Cite this paper: Boulmane, M. , Santa-Regina, M. , Halim, M. , Khia, A. , Oubrahim, H. , Abbassi, H. and Santa-Regina, I. (2015) Organic Carbon Storage in Evergreen Oak Forest Ecosystems of the Middle and High Moroccan Atlas Areas. Open Journal of Forestry, 5, 260-273. doi: 10.4236/ojf.2015.53023.
References

[1]   Adams, D. M., Alig, R. J., McCarl, B. A., Callaway, J. M., & Winnett, S. M. (1999). Minimum Cost Strategies for Sequestering Carbon in Forests. Land Economics, 75, 360-374.
http://dx.doi.org/10.2307/3147183

[2]   Andreux, F., & Choné, T. (1993). Dynamics of Soil Organic Matter in the Amazon Ecosystem and after Deforestation: Basis for Efficient Agricultural Management. Nancy: Centre de Recherche Scientifique.

[3]   Batjes, N. H. (1996). Total Carbon and Nitrogen in the Soils of the World. European Journal of Soil Science, 47, 151-163.
http://dx.doi.org/10.1111/j.1365-2389.1996.tb01386.x

[4]   Batjes, N. H. (2004a). Estimation of Soil Carbon Gains upon Improved Management within Croplands and Grasslands of Africa. Environment, Development and Sustainability, 6, 133-143.
http://dx.doi.org/10.1023/B:ENVI.0000003633.14591.fd

[5]   Batjes, N. H. (2004b). Soil Carbon Stocks and Projected Changes according to Land Use and Management: A Case Study for Kénya. Soil Use and Management, 20, 350-356.
http://dx.doi.org/10.1079/SUM2004269

[6]   Batjes, N. H. (2005a). Soil Carbon Stocks and Projected Changes within Crosslands in Jordan. Geoderma, 25, 415-423.

[7]   Batjes, N. H. (2005b). Organic Carbon Stocks in the Soils of Brazil. Soil Use and Management, 21, 22-24.
http://dx.doi.org/10.1079/SUM2005286

[8]   Belghazi, B., Ezzahiri, M., Aoid, S., & El-Tobi, M. (2001). Estimation de la biomasse du chêne vert dans le massif forestier d’Ait Hatem (Oulmes). Annales de la Recherche Forestière au Maroc, 34, 9-16.

[9]   Bernoux, M., Cerri, C. C., Volkoff, B., Carvalho, M. C. S., Feller, C., Cerri, C. E. P., Eschenbrenner, V., Piccolo, M. C., & Brigite, F. (2005). Gaz à effet de serre et stockage du carbone par les sols: Inventaire au niveau du Brésil. Cahiers Agricultures, 14, 96-100.

[10]   Boudy, P. (1950). Economie forestière Nord Africaine. Tome II, monographie et traitement des essences forestières. Fasc. I. Edit. Larousse, Paris.

[11]   Boulmane, M., Halim, M., El Antry-Tazi, S., Berred, K., & El Harchaoui, H. (2007). Evaluation du stock du carbone et dynamique de la décomposition de la matière organique dans les sols de la Maamora. Annales de la Recherche Forestière au Maroc, 39, 185-194.

[12]   Boulmane, M., Makhloufi, M., Bouillet, J. P., Saint-André, L., Satrani, B., & Halim, M. (2010). Estimation du stock de carbone organique dans les Quercus ilex du Moyen Atlas Marocain. Acta Botanica Gallica, 157, 451-467.
http://dx.doi.org/10.1080/12538078.2010.10516222

[13]   Boulmane, M., Santa-Regina, I., Khia, A., Abbassi, H., & Halim, M. (2013). Aboveground Biomass and Nutrient Pools in Two Evergreen Oak Stands of the Middle Moroccan Atlas Area. Arid Land Research and Management, 27, 188-202.
http://dx.doi.org/10.1080/15324982.2012.723114

[14]   Bouma, J., Batjes, N. H., & Groot, J. J. R. (1998). Exploring Land Quality Effects on World Food Supply. Geoderma, 86, 43-59.
http://dx.doi.org/10.1016/S0016-7061(98)00034-2

[15]   Brown, S. (1998). Present and Future Role of Forests in Global Climate Change. In B. Goapl, P. S. Pathak, & K. G. Saxena (Eds.), Ecology Today: An Anthology of Contemporary Ecological Research (pp. 59-74). New Delhi: International Scientific Publications.

[16]   Chiti, T., Diaz-Pinès, E., & Rubio, A. (2012). Soil Organic Carbon Stock of Conifers, Broadleaf and Evergreen Broadleaf Forests of Spain. Biology and Fertility of Soils, 48, 817-826.
http://dx.doi.org/10.1007/s00374-012-0676-3

[17]   Davi, H., Dufrêne, E., Granier, A., Le Dantec, V., Barbaroux, C., Francois, C., & Bréda, C. (2005). Modelling Carbon and Water Cycles in a Beech Forest Part II: Validation of the Main Processes from Organ to Stand Scale. Ecological Modelling, 1, 1-19.

[18]   Droogers, P., & Bouma, J. (1997). Soil Survey Input in Exploratory Modelling of Sustainable Management Practice. Soil Science Society of America Journal, 61, 1704-1710.
http://dx.doi.org/10.2136/sssaj1997.03615995006100060023x

[19]   Dupouey, J. L., Pignard, G., Badeau, V., Thimonier, A., Dhot, J. F., Nepveu, G., Bergès, L., Augusto, L., Belkacem, S., & Nys, C. (1999). Stocks et flux de carbone dans les forêts francaises. Paris: CRAAF, Edition Académie des Sciences Francaise, 278-292.

[20]   Eglin, T. (2005). Impact de l’hydromorphie et la topographie sur la variabilité spatiale des stocks de carbone en forêt de Fougères (Ille-et-Vilaine). Thèse INA, Paris-Grignon.

[21]   Ezzahiri, M., Belghazi, B., Romane, F., Qarro, M., & Sabir, M. (1995). Phytomasse et accroissements du chêne vert dans le dispositif expérimental de Dayat Aoua du Moyen Atlas. Annales de la Recherche Forestière au Maroc, 29, 81-89.

[22]   Gallardo, J. F., Santa-Regina, I., Harrison, A. F., & Howard, D. M. (1995). Organic Matter and Nutrient Dynamics in Three Ecosystems of the “Sierra de Béjar” Mountains (Salamanca Province, Spain). Acta Oecologica, 16, 447-459.

[23]   GIEC (2007). Changements climatiques: Bilan des changements climatiques: Rapport de synthèse. Publié à l’intention des décideurs.

[24]   Hounzandji, P. I. A. (2009). Effet des transformations des écosystèmes naturels (Cedrus atlantica, Quercus rotundifolia) sur la séquestration de carbone dans le Moyen Atlas (Forêt d’Azrou). Mémoire de 3ème Cycle, ENFI, Salé-Maroc.

[25]   Lecointe, S., Nys, C., Walter, C., Forgeard, F., Huet, S., Recena, P., & Follain, S. (2005). Estimation of Carbon Stocks in a Beech Forest (Fougères Forest): Extrapolation from Plots to the Whole Forest. Annals of Forest Science, 25, 432-451.

[26]   Leonardi, S., Santa-Regina, I., Rapp, M., Gallego, H. A., & Rico, M. (1996). Biomass, Litterfall and Nutrient Content in Castanea sativa Coppice Stands of Southern Europe. Annals of Forest Science, 53, 1071-1081.
http://dx.doi.org/10.1051/forest:19960603

[27]   Liski, J. (1999). CO2 Emissions from Soil in Response to Climatic Warming Are Overestimated the Decomposition of Old Soil Organic Matter Is Tolerant Temperature. AMBIO, 28, 171-174.

[28]   Liski, J., & Westeman, C. J. (1997a). Carbon Storage in Forest Soil of Finland. 1. Effect of Thermal Climate. Biogeochemistry, 36, 239-260.
http://dx.doi.org/10.1023/A:1005711024022

[29]   Liski, J., & Westeman, C. J. (1997b). Carbon Storage in Forest Soil of Finland. 2. Size and Regional Patterns. Biogeochemistry, 36, 261-274.
http://dx.doi.org/10.1023/A:1005742523056

[30]   M.A.T.U.H.E. (2010). Second Communication Nationale Initiale à la Convention Cadre des Nations Unies sur les changements climatiques.

[31]   M’hirit, O., & Benziane, M. (2006). Le cèdre de l’Atlas: Mémoire du temps. Edition Mardaga, Sprimont-Belgique.

[32]   Murray, B. C. (2000). Carbon Values, Reforestation, and “Perverse” Incentives under the Kyoto Protocol: An Empirical Analysis. Mitigation and Adaptation Strategies for Global Change, 5, 271-295.
http://dx.doi.org/10.1023/A:1009636028776

[33]   Ouagga, T. (2005). Etude l’effet des modes d’occupation des sols sur la séquestration du carbone et l’agrégation des sols dans le bassin versant de la Rheraya (Haut Atlas du Maroc). Mémoire de 3ème Cycle, ENFI, Salé-Maroc.

[34]   Post, W. H., & Kwon, K. C. (2000). Soil Carbon Sequestration and Land Use Change: Processes and Potential. Global Change Biology, 6, 327-337.
http://dx.doi.org/10.1046/j.1365-2486.2000.00308.x

[35]   Rapp, M., Santa-Regina, I., Rico, M., & Gallego, H. A. (1999). Biomass, Nutrient Content, Litterfall and Nutrient Return to the Soil in Mediterranean Oak Forests. Forest Ecology and Management, 119, 39-49.
http://dx.doi.org/10.1016/S0378-1127(98)00508-8

[36]   Saint-André, L., & Picard, N. (2005). Construire des tarifs de cubages, biomasses, minéralomasse. Edité par l’INRA de Nancy, France.

[37]   Santa-Regina, I. (2000). Biomass Estimation and Nutrient Pools in Four Quercus pyrenaica in Sierra de Gata Mountains, Salamanca, Spain. Forest Ecology and Management, 132, 127-141.

[38]   Santa-Regina, I., Rapp, M., Martín, A., & Gallardo, J. F. (1997). Nutrient Release Dynamics in Decomposing Leaf Litter in Two Mediterranean Deciduous Oak Species. Annals of Forest Science, 54, 747-760.
http://dx.doi.org/10.1051/forest:19970805

[39]   Santa-Regina, I., & Tarazona, T. (2001). Nutrient Cycling in a Natural Beech Forest and Adjacent Planted Pine in Northern Spain. Forestry, 74, 11-28.
http://dx.doi.org/10.1093/forestry/74.1.11

[40]   Santa-Regina, I., Tarazona, T., & Calvo, R. (2001). Aboveground Biomass in a Beech Forest and a Scots Pine Plantation in the Sierra de la Demanda Area of Northern Spain. Annals of Forest Science, 54, 261-269.
http://dx.doi.org/10.1051/forest:19970304

[41]   Schlesinger, W. H. (1997). Biogeochemistry: An Analysis of Global Change (2ème édition). San Diego, CA: Academic Press.

[42]   Schoenenberger, A. (1975). Cours d’écologie et botanique forestière. ENFI, 110 p.

[43]   Smith, P., Martino, D., Cai, Z., Gwary, D., Janzen, H., Kumar, P., McCarl, B., Ogle, S., O’Mara, F., Rice, C., Scholes, B., & Sirotenko, O. (2007). Agriculture. In B. Metz, O. R. Davidson, P. R. Bosch, R. Dave, & L. A. Meyer (Eds.), Climate Change 2007: Mitigation. Contribution of Working Group III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge, UK and New York: Cambridge University Press.

[44]   Sombroek, W. G., Nachtergaele, F. O., & Hebel, A. (1993). Amounts, Dynamics and Sequestering of Carbon in Tropical and Subtropical Soils. AMBIO, 22, 417-426.

[45]   Torn, M. S., Trumbore, S. E., Chadwick, O. A., Vitousek, P. M., & Hendricks, D. M. (1997). Mineral Control of Soil Organic Carbon Storage and Turnover. Nature, 139, 170-173.
http://dx.doi.org/10.1038/38260

[46]   Walkley, J., & Black, W. (1934) An Experimentation of the Degtjareff Method for Determining Soil Organic Matter, and a Proposed Modification of the Chromic Acid Titration Method. Soil Science, 37, 29-38.
http://dx.doi.org/10.1097/00010694-193401000-00003

[47]   Watson, R. T., Rhodhe, H., Oeschger, F., & Siegenthaler, U. (1990). Greenhouse Gases and Aerosols. In J. T. Houghton, G. J. Jenkins, & J. J. Ephraums (Eds.), Climate Change: The IPCC Scientific Assessment. Cambridge: Cambridge University Press.

 
 
Top