Back
 AJPS  Vol.6 No.5 , March 2015
An Analysis of a New Foliar Architecture of the Permian Period in Mexico and Its Ecological Interactions
Abstract: The Paleozoic flora of the state of Puebla is characterized by the presence of ancient and conservative lineages; we focus this study on the taxonomical Annularia, Bjuvia and the new morphotype. These groups are found in carbonaceous lutite, where paleosoils, small roots and trunks in situ are abundant, and have been associated with swampy environments. In this paper, we discuss the presence of a new architectural form of megaphyll size that has not been registered in other Permian locations. These lutite imprints are the second most abundant in this location and their degree of preservation supports their autochthonous nature. The large size of its funnel-shaped blade and its extremely long petiole support the idea that its size was a response to a competition for biotic resources and to the hydric stress to which communities of this region were exposed, as consequence of the environmental conditions prevailing at the end of the Paleozoic era. It is proposed that they lived in environments with seasonal humidity and this hypothesis is supported by both the abundance of fossil groups and lithology.
Cite this paper: León, M. , Flores-Barragan, M. and Lozano-Carmona, D. (2015) An Analysis of a New Foliar Architecture of the Permian Period in Mexico and Its Ecological Interactions. American Journal of Plant Sciences, 6, 612-619. doi: 10.4236/ajps.2015.65066.
References

[1]   Montañez, I.P., Tabor, N.J., Niemeier, D., DiMichele, W.A., Frank, T.D., Fielding, C.R., Isbell, J.L., Birgenheier, L.P. and Rygel, M.C. (2007) CO2-Forced Climate and Vegetation Instability during Late Paleozoic Deglaciation. Science, 315, 87-91.
http://dx.doi.org/10.1126/science.1134207

[2]   Tabor, N.J. and Poulsen, C.J. (2008) Late Paleozoic Tropical Climate and Atmospheric Circulation: A Review of Paleoclimate Indicators and Models. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 181-192.

[3]   DiMichele, W.A., Gastaldo, R.A. and Pfefferkorn, H.W. (2005) Plant Biodiversity Partitioning in the Late Carboniferous and Early Permian and Its Implications for Ecosystem Assembly. Proceedings of the California Academy of Sciences, 56, 32-49.

[4]   DiMichele, W.A. (2014) Wetland-Dryland Vegetational Dynamics in the Pennsylvanian Ice Age Tropics. International Journal of Plant Sciences, 175, 123-164.
http://dx.doi.org/10.1086/675235

[5]   DiMichele, W.A., Gastaldo, R.A. and Pfefferkorn, H.W. (2005) Plant Biodiversity Partitioning in the Late Carboniferous and Early Permian and Its Implications for Ecosystem Assembly. Proceedings of the California Academy of Sciences, 56, 32-49.

[6]   DiMichele, W.A., Kerp, H., Tabor, N.J. and Looy, C.V. (2008) The So-Called “Paleophytic-Mesophytic” Transition in Equatorial Pangea: Multiple Biomes and Vegetational Tracking of Climate Change through Geological Time. Palaeogeography, Palaeoclimatology, Palaeoecology, 268, 152-163.
http://dx.doi.org/10.1016/j.palaeo.2008.06.006

[7]   DiMichele, W.A., Stein, W.E. and Bateman, R.M. (2001) Ecological Sorting during the Paleozoic Radiation of Vascular Plant Classes. In: Allmon, W.D. and Bottjer, D.J., Eds., Evolutionary Paleoecology, Columbia University Press, New York, 285-335.

[8]   Looy, C.V., Kerp, H., Duijnstee, I.A.P. and DiMichele, W.A. (2014) The Late Paleozoic Ecological-Evolutionary Laboratory, a Land-Plant Fossil Record Perspective. The Sedimentary Record, 12, 4-10.
http://dx.doi.org/10.2110/sedred.2014.4.4

[9]   Wink, S.L and DiMichele, W.A. (1992) Ecological Characterization of Fossil Plants. In: Berensmeyer, A.K., Damuth, J.D., DiMichele, W.A., Potts, R., Sues, H.D. and Wing, S.L., Eds., Evolutionary Paleoecology of Terrestrial Plants and Animals, The University of Chicago Press, Chicago, 140-180.

[10]   Givnish, T.J. (1982) On the Adaptative Significance of Leaf Height in Forest Herbs. The American Naturalist, 120, 353-381.
http://dx.doi.org/10.1086/283995

[11]   Weber, R. (1997) How Old Is the Triassic Flora of Sonora and Tamaulipas and News on Leonardian Floras in Puebla and Hidalgo, Mexico. Revista Mexicana de Ciencias Geológicas, 14, 225-243.

[12]   Carrillo-Bravo, J. (1961) Geología del Anticlinorio Huizachal-Peregrina al NW de Ciudad Victoria, Tamaulipas. Boletín de la Asociación Mexicana de Geólogos Petroleros, 13, 1-98.

[13]   Hernández-Castillo, G.R., Silva-Pineda, S.A. and Cevallos, S.R.S. (2014) Early Permian Conifer Remains from Central Mexico and Reevaluation of Paleozoic Conifer Morphotaxa. Boletín de la Sociedad Geológica Mexicana, 66, 85-96.

[14]   Magallón-Puebla, S.A. (1991) Estudio sistemático y biométrico de helechos del tipo Pecopteris (Marattiales; Pteridophyta) de la Formación Matzitzi (Permo-Carbonífero), estado de Puebla. Bachelor. Universidad Nacional Autónoma de México, Facultad de Ciencias.

[15]   Calderón-García, A. (1956) Bosquejo geológico de la región de San Juan Raya, Puebla. en XX Congreso Geológico Internacional, Libreto Guía, Excursión A-11, Universidad Nacional Autónoma de México, Instituto de Geología, México, 9-27.

[16]   Morán-Zenteno, D.J., Caballero-Miranda, C.I., Silva-Romo, G., Ortega-Guerrero, B. and González-Torres, E. (1993) Jurassic-Cretaceous Paleogeographic Evolution of the Northern Mixteca Terrane, Southern Mexico. Geofísica Internacional, 32, 453-473.

[17]   Hernández-Láscares, D. (2000) Contribución al conocimiento de la estratigrafía de la Formación Matzitzi, área Los Reyes Metzontla-Santiago Coatepec, extremo suroriental del estado de Puebla. Tesis de maestría, Universidad Nacional Autónoma de México, México.

[18]   Centeno-García, E., Mendoza-Rosales, C.C. and Silva-Romo, G. (2009) Sedimentología de la Formación Matzitzi (Paleozoico superior) y significado de sus componentes volcánicos, región de Los Reyes Metzontla-San Luis Atolotitlán, Estado de Puebla. Revista mexicana de ciencias geológicas, 26, 18-36.

[19]   Font Quer, P. (2000) Diccionario de Botánica. Editorial península, Barcelona.

[20]   Gnaedinger, S. and Herbst, R. (1999) La flora Triásica del Grupo El Tranquilo, provincia de Santa Cruz, Patagonia. Parte VI: Ginkgoales. Ameghiniana, 36, 281-296.

[21]   Seyfullah, L.J., Glasspool, I. and Hilton, J. (2014) Hooked: Habits of the Chinese Permian gigantopterid Gigantonoclea. Journal of Asian Earth Sciences, 83, 80-90.
http://dx.doi.org/10.1016/j.jseaes.2014.01.020

[22]   Di Michele, W.A., Looy, C.V. and Chaney, D.S. (2011) A New Genus of Gigantopterid from the Middle Permian of the United States and China and Its Relevance to the Gigantopterid Concept. International Journal of Plant Sciences, 172, 107-119.
http://dx.doi.org/10.1086/657276

[23]   Li, H.Q., Tian, B.L., Taylor, E.L. and Taylor, T.N. (1994) Foliar Anatomy of Gigantonoclea guizhouensis (Gigantopteridales) from the Upper Permian of Guizhou Province, China. American Journal of Botany, 81, 678-689.
http://dx.doi.org/10.2307/2445646

[24]   Sack, L. and Scoffoni, C. (2013) Leaf Venation: Structure, Function, Development, Evolution, Ecology and Applications in the Past, Present and Future. New Phytologist, 198, 983-1000.
http://dx.doi.org/10.1111/nph.12253

[25]   Niinemets, U., Portsmuth, A., Tena, D., Tobias, M., Matesanz, S. and Valladares, F. (2007) Do We Underestimate the Importance of Leaf Size in Plant Economics? Disproportional Scaling of Support Costs within the Spectrum of Leaf Physiognomy. Annals of Botany, 100, 283-303.
http://dx.doi.org/10.1093/aob/mcm107

[26]   Kustatscher, E. and Van Konijnenburg-Van Citter, J.H.A. (2010) Seed Ferns and Cycadophytes from the Triassic Flora of Thale (Germany). Neues Jahrbuch der Geologie und Paläontologie, 258, 195-217.
http://dx.doi.org/10.1127/0077-7749/2010/0097

[27]   Lepage, B.A. and Pfefferkorn, H.W. (2000) Did Ground Cover Change over Geologic Time? In: Gastaldo, R.A. and DiMichele, W.A., Eds., Phanerozoic Terrestrial Ecosystems in the Paleontological Society Papers 6, 171-182.

[28]   Miall, A. (1996) The Geology of Fluvial Deposits: Sedimentary Facies, Basin Analysis, and Petroleum Geology. Springer, Berlin, 582.

 
 
Top