The Weighted Mean Standard Deviation Distribution: A Geometrical Framework

Show more

References

[1] Misner, C.W., Wheeler, J.A. and Thorne, K.S. (1973) Gravitation. W.H. Freeman & Company.

[2] Greene, B. (1999) The Elegant Universe: Superstrings, Hidden Dimensions, and the Quest for the Ultimate Theory. W.W. Norton, New York.

[3] Caimmi, R. (2013) The Arithmetic Mean Standard Deviation Distribution: A Geometrical Framework. Applied Mathematics, 4, 1-10.

[4] Malkin, Z.M. (2013) On the Calculation of Mean-Weighted Value in Astronomy. Astronomy Reports, 57, 882-887.

http://dx.doi.org/10.1134/S1063772913110048

[5] Gnedenko, B. (1978) The Theory of Probability. Mir, Moscow.

[6] Caimmi, R. (2014) Il Problema della Misura. Aracne, Roma. (In Italian, In Press)

[7] Papoulis, A. (1965) Probabilities, Random Variables, and Stochastic Processes. McGraw-Hill, New York.

[8] Smirnov, V. (1970) Cours de Mathè matiques Supè rieures. Mir, Moscow.

[9] Gantmacher, F.R. (1966) Théorie des Matrices. Dunod, Paris.

[10] Spiegel, M.R. (1969) Mathematical Handbook of Formulas and Tables. Schaum’s Outline Series, McGraw-Hill, New York.