[1] Reimann, P. and Hanggi, P. (2002) Introduction to the Physics of Brownian Motors. Applied Physics A: Materials Science & Processing, 75, 169-178.
http://dx.doi.org/10.1007/s003390201331
[2] Wang, H.Y. and Bao, J.D. (2004) The Roles of Ratchet in Transport of Two Coupled Particles. Physica A: Statistical Mechanics and Its Applications, 337, 13-26.
http://dx.doi.org/10.1016/j.physa.2004.01.031
[3] Wang, H.Y. and Bao, J.D. (2005) Cooperation Behavior in Transport Process of Coupled Brownian Motors. Physica A: Statistical Mechanics and Its Applications, 357, 373-382.
http://dx.doi.org/10.1016/j.physa.2005.01.059
[4] Wang, H.Y. and Bao, J.D. (2007) Transport Coherence in Coupled Brownian Ratchet. Physica A: Statistical Mechanics and Its Applications, 374, 33-40.
http://dx.doi.org/10.1016/j.physa.2006.07.005
[5] Fornés, J.A. (2005) An Oscillating Electric Field with Thermal Noise Increases the Rotational Diffusion and Drives Rotation in a Dipole. Journal of Colloid and Interface Science, 281, 236-239.
http://dx.doi.org/10.1016/j.jcis.2004.08.088
[6] von Gehlen, S., Evstigneev, M. and Reimann, P. (2008) Dynamics of a Dimer in a Symmetric Potential: Ratchet Effect Generated by an Internal Degree of Freedom. Physical Review E, 77, Article ID: 031136.
http://dx.doi.org/10.1103/PhysRevE.77.031136
[7] Lipowsky, R., Chai, Y., Klumpp, S., Liepelt, S. and Müller, M.J.I. (2006) Molecular Motor Traffic: From Biological Nanomachines to Macroscopic Transport. Physica A: Statistical Mechanics and Its Applications, 372, 34-51.
http://dx.doi.org/10.1016/j.physa.2006.05.019
[8] Taoa, Y.G. and Kapralb, R. (2008) Design of Chemically Propelled Nanodimer Motors. Journal of Chemical Physics, 128, Article ID: 164518.
http://dx.doi.org/10.1063/1.2908078
[9] Howard, J. (2001) Mechanics of Motor Proteins and the Cytoskeleton. Sinauer Associates, Massachusetts.
[10] Block, S.M. (1995) Nanometres and Piconewtons: The Macromolecular Mechanics of Kinesin. Trends in Cell Biology, 5, 169-175.
http://dx.doi.org/10.1016/S0962-8924(00)88982-5
[11] Visscher, K., Schnitzer, M.J. and Block, S.M. (1999) Single Kinesin Molecules Studied with a Molecular Force Clamp. Nature, 400, 184-189.
http://dx.doi.org/10.1038/22146
[12] Schnitzer, M.J., Visscher, K. and Block, S.M. (2000) Force Production by Single Kinesin Motors. Nature Cell Biology, 2, 718-723.
http://dx.doi.org/10.1038/35036345
[13] Speer, D., Eichhorn, R., Evstigneev, M. and Reimann, P. (2012) Dimer Motion on a Periodic Substrate: Spontaneous Symmetry Breaking and Absolute Negative Mobility. Physical Review E, 85, Article ID: 061132.
http://dx.doi.org/10.1103/PhysRevE.85.061132
[14] Zimmermann, E. and Seifert, U. (2012) Efficiencies of a Molecular Motor: A Generic Hybrid Model Applied to the F1- ATPase. New Journal of Physics, 14, Article ID: 103023. http://dx.doi.org/10.1088/1367-2630/14/10/103023
[15] Pinkoviezky, I. and Gov, N.S. (2013) Modelling Interacting Molecular Motors with an Internal Degree of Freedom. New Journal of Physics, 15, Article ID: 025009.
http://dx.doi.org/10.1088/1367-2630/15/2/025009
[16] Ermak, D.L. and Mc Cammon, J.A. (1978) Brownian Dynamics with Hydrodynamic Interactions. The Journal of Chemical Physics, 69, 1352-1360.
http://dx.doi.org/10.1063/1.436761
[17] Kemps, J.A.L. and Bhattacharjee, S. (2009) Particle Tracking Model for Colloid Transport near Planar Surfaces Covered with Spherical Asperities. Langmuir, 25, 6887-6997.
http://dx.doi.org/10.1021/la9001835
[18] Günther, S. and Kruse, K. (2008) A Simple Self-Organized Swimmer Driven by Molecular Motors. Europhysics Letters, 84, Article ID: 68002.
http://dx.doi.org/10.1209/0295-5075/84/68002
[19] Ramia, M., Tullock, D.L. and Phan-Thien, N. (1993) The Role of Hydrodynamic Interaction in the Locomotion of Microorganisms. Biophysical Journal, 65, 755-778.
http://dx.doi.org/10.1016/S0006-3495(93)81129-9
[20] Kim, M.J. and Powers, T.R. (2004) Viscous Hydrodynamics of Rotating Helices. Physical Review E, 69, Article ID: 061910.
[21] Fornés, J.A. (2010) Hydrodynamic Interactions Induce Movement against an External Load in a Ratchet Dimer Brownian Motor. Journal of Colloid and Interface Science, 341, 376-379. http://dx.doi.org/10.1016/j.jcis.2009.09.057
[22] Machura, L., Kostur, M., Marchesoni, F., Talkner, P., H?nggi, P. and Luczka, J. (2005) Optimal Strategy for Controlling Transport in Inertial Brownian Motors. Journal of Physics: Condensed Matter, 17, S3741-S3752.
[23] Grimm, A. and Stark, H. (2011) Hydrodynamic Interactions Enhance the Performance of Brownian Ratchets. Soft Matter, 7, 3219-3227.
http://dx.doi.org/10.1039/C0SM01085E
[24] Polson, J.M., Bylhouwer, B., Zuckermann, M.J., Horton, A.J. and Scott, W.M. (2010) Dynamics of a Polymer in a Brownian Ratchet. Physical Review E, 82, Article ID: 051931.
http://dx.doi.org/10.1103/PhysRevE.82.051931
[25] Dickinson, E. (1985) Brownian Dynamic with Hydrodynamic Interactions: The Application to Protein Diffusional Problems. Chemical Society Reviews, 14, 421-455.
http://dx.doi.org/10.1039/cs9851400421
[26] Doi, M. and Edwards, S.F. (1986) The Theory of Polymer Dynamics. Claredon Press, Oxford.
[27] Freund, J.A. and Schimansky-Geier, L. (1999) Diffusion in Discrete Ratchets. Physical Review E, 60, 1304.
http://dx.doi.org/10.1103/PhysRevE.60.1304
[28] Houtman, D., Pagonabarraga, I., Lowe, C.P., Esseling-Ozdoba, A., Emons, A.M.C. and Eiser, E. (2007) Hydrodynamic Flow Caused by Active Transport along Cytoskeletal Elements. Europhysics Letters, 78, Article ID: 18001.
http://dx.doi.org/10.1209/0295-5075/78/18001