AJAC  Vol.6 No.4 , March 2015
Analysis of ATR-FTIR Absorption-Reflection Data from 13 Polymeric Fabric Materials Using Chemometrics
ABSTRACT
We used both correlation and covariance-principal component analysis (PCA) to classify the same absorption-reflectance data collected from 13 different polymeric fabric materials that was obtained using Attenuated Total Reflectance-Fourier Transform Infrared spectroscopy (ATR-FTIR). The application of the two techniques, though similar, yielded results that represent different chemical properties of the polymeric substances. On one hand, correlation-PCA enabled the classification of the fabric materials according to the organic functional groups of their repeating monomer units. On the other hand, covariance-PCA was used to classify the fabric materials primarily according to their origins; natural (animal or plant) or synthetic. Hence besides major chemical functional groups of the repeat units, it appears covariance-PCA is also sensitive to other characteristic chemical (inorganic and/or organic) or biochemical material inclusions that are found in different samples. We therefore recommend the application of both covariance-PCA and correlation-PCA on datasets, whenever applicable, to enable a broader classification of spectroscopic information through data mining and exploration.

Cite this paper
Pumure, I. , Ford, S. , Shannon, J. , Kohen, C. , Mulcahy, A. , Frank, K. , Sisco, S. and Chaukura, N. (2015) Analysis of ATR-FTIR Absorption-Reflection Data from 13 Polymeric Fabric Materials Using Chemometrics. American Journal of Analytical Chemistry, 6, 305-312. doi: 10.4236/ajac.2015.64029.
References
[1]   Hunt, B.J. and James, M.I. (1993) Polymer Characterization. Blackie Academic and Professionals, New York and London.

[2]   Rusak, D.A., Brown, L.M. and Martin, S.D. (2003) Classification of Vegetable Oils by Principal Component Analysis of FTIR Spectra. Journal of Chemical Education, 80, 541.
http://dx.doi.org/10.1021/ed080p541

[3]   Kulcke, A., Gurschler, C., Spock, G., Leitner, R. and Kraft, M. (2003) On-Line Classification of Synthetic Polymers Using Near Infrared Spectral Imaging. Journal of Near Infrared Spectroscopy, 11, 71-81.
http://dx.doi.org/10.1255/jnirs.355

[4]   Lukasiak, M.B., Faria, R., Zomer, S., Brereton, R.G. and Duncan, J.C. (2006) Pattern Recognition for the Analysis of Polymeric Materials. Analyst, 131, 73-80.
http://dx.doi.org/10.1039/B510561G

[5]   Lloyd, G.R., Brereton R.G., Faria, R. and Duncan, J.C. (2007) Learning Vector Quantization for Multiclass Classification: Application to Characterization of Plastics. Journal of Chemical Information and Modeling, 47, 1553-1563.
http://dx.doi.org/10.1021/ci700019q

[6]   Fari, R., Duncan, J.C. and Brereton R.G. (2007) Dynamic Mechanical Analysis and Chemometrics for Polymer Identification. Polymer Testing, 26,402-412.
http://dx.doi.org/10.1016/j.polymertesting.2006.12.012

[7]   Lavine, B.K. and Workman, J. (2013) Chemometrics. Analytical Chemistry, 85, 705.
http://dx.doi.org/10.1021/ac303193j

[8]   Eriksson, L., Trygg, J. and Wold, S. (2014) A Chemometrics Toolbox Based on Projectionsand Latent Variables. Journal of Chemometrics, 28, 332-346.
http://dx.doi.org/10.1002/cem.2581

[9]   Pienta, N.J. (2013) Taking a Cue from Statistics Education. Journal of Chemical Education, 90, 525.
http://dx.doi.org/10.1021/ed400242f

[10]   Sandasi, M., Kamatou, G.P.P., Gavaghan, C., Barasnka, M. and Viljoen, A.M. (2011) A Quality Control Method for Geranium Oil Based on Vibrational Spectroscopy and chemometric Data Analysis. Vibrational Spectroscopy, 57, 242-247.
http://dx.doi.org/10.1016/j.vibspec.2011.08.002

[11]   Pumure, I., Renton, J.J. and Smart, R.B. (2011) The Interstitial Location of Selenium and Arsenic in Rocks Associated with Coal Mining Using Ultrasound Extractions and Principal Component Analysis (PCA). Journal of Hazardous Materials, 198, 151-158.
http://dx.doi.org/10.1016/j.jhazmat.2011.10.032

[12]   Skoog, D.A., Holler, F.J. and Crouch, R.S. (2007) Principles of Instrumental Analysis. 6th Edition, Chapter 17, Thompson Brookes/Cole, California, 461-463.

[13]   Kannan, R.Y., Salacinski, H.J., De Groot, J., Clatworthy, I., Bozec, L., Horton, M., Butler, P.E. and Seifalian, A.M. (2005) The Antithrombogenic Potential of a Polyhedral Oligomeric Silsesquioxane (POSS) Nanocomposite. Biomacromolecules, 7, 215-223.
http://dx.doi.org/10.1021/bm050590z

[14]   Jha, M.K., Kumar, V., Maharaj, L. and Singh, R.J. (2004) Studies on Leaching and Recycling of Zinc from Rayon Waste Sludge. Industrial & Engineering Chemistry Research, 43, 1284-1295.
http://dx.doi.org/10.1021/ie020949p

[15]   Sikorski, P., Wada, M., Heux, L., Shintani, H. and Stokke, B.T. (2004) Crystal Structure of Cellulose Triacetate I. Macromolecules, 37, 4547-4553.
http://dx.doi.org/10.1021/ma0498520

[16]   Crompton, T.R. (1993) Practical Polymer Analysis. Plenum Press, New York.

[17]   Letcher, T.M. and Lutseke, N.S. (1990) A Closer Look at Cotton, Rayon, and Polyester Fibers. Journal of Chemical Education, 67, 361.
http://dx.doi.org/10.1021/ed067p361

[18]   Menezes, E.A., Carapelli, R., Bianchi, S.R., Souza, S.N.P., Matos, W.O., Pereira-Filho, E.R. and Nogueira, A.R.A. (2010) Evaluation of the Mineral Profile of Textile Materials Using Inductively Coupled Plasma Optical Emission Spectrometry and Chemometrics. Journal of Hazardous Materials, 182, 325-330.
http://dx.doi.org/10.1016/j.jhazmat.2010.06.033

[19]   Cserháti, T. and Illés, Z. (1991) Comparison of Two Principal Component Analysis Methods to Evaluate Reversed-Phase Retention Data. Journal of Pharmaceutical and Biomedical Analysis, 9, 685-691.
http://dx.doi.org/10.1016/0731-7085(91)80207-P

 
 
Top