JCT  Vol.6 No.3 , March 2015
A Hypothesis Concerning the Effect of Schedule on the Pattern of 5-Fluorouracil Toxicity
Abstract: The significant effect that scheduling has upon the severity and types of drug toxicity has been known for many years. Evidence is available demonstrating that the schedule chosen will substantially effect the relative distribution of drug to various target organs. It has been shown that a likely cause for this with doxorubicin is that the efficiency of the various enzyme complexes responsible for disposing of the drug can be affected by scheduling. We believe a similar process can explain the marked effect that scheduling has on the pattern of 5-fluorouracil toxicity and present both clinical and computer data to illustrate this.
Cite this paper: Weiss, A. (2015) A Hypothesis Concerning the Effect of Schedule on the Pattern of 5-Fluorouracil Toxicity. Journal of Cancer Therapy, 6, 251-256. doi: 10.4236/jct.2015.63028.

[1]   Curreri, A.R., Ansfield, F.J., McIver, F.A., Waisman, H.A. and Heidelberger, C (1958) Clinical Studies with 5-Fluorouracil. Cancer Research, 18, 478-484.

[2]   Weiss, A.J. and Jackson, L.G. (1961) The Effect of 5-Fluorouracil Upon Carcinomas of Gastrointestinal Tract and Related Organs. American Journal of Gastroenterology, 35, 138-146.

[3]   Kennedy, B.J. and Theologides, A. (1961) The Role of 5-Fluorouracil in Malignant Disease. Annals of Internal Medicine, 55, 719-722.

[4]   Lemon, H.M. (1960) Reduction of 5-Fluorouracil Toxicity in Man with Retention of Anticancer Effects by Prolonged Intravenous Administration in 5 Percent Dextrose. Cancer Chemotherapy Reports, 8, 97-101.

[5]   Lemon, H.M., Modzen, P.J., Mirchandni, R., Farmer, D.A. and Athans, J. (1963) Decreased Intoxication by Fluorouracil When Slowly Administered in Glucose. JAMA, 185, 1012-1016.

[6]   Valko, P. and Vajda, S. (1989) Advanced Scientific Computing in Basic With Applications in Chemistry. Biology and Pharmacology. Elsevier, Amsterdam, 268.

[7]   Gupta, N., Saleem, A., K?tz, B., Osman, S., Aboagye, E.O., Phillips, R., Vernon, C., Wasan, H., Jones, T., Hoskin, P.J. and Price, P.M. (2006) Carbogen and Nicotinamide Increase Blood Flow and 5-Fluorouracil Delivery but Not 5-Fluorouracil Retention in Colorectal Cancer Metastases. Clinical Cancer Research, 12, 3115-3123.

[8]   Ojugo, A.S., McSheehy, P.M., Stubbs, M., Alder, G., Bashford, C.L., Maxwell, R.J., Leach, M.O., Judson, I.R. and Griffiths, J.R. (1998) Influence of pH on the Uptake of 5-Fluorouracil into Isolated Tumour Cells. British Journal of Cancer, 77, 873-879.

[9]   Milano, G. and Chamorey, A.L. (2002) Clinical Pharmacokinetics of 5-Fluorouracil with Consideration of Chronopharmacokinetics. Chronobiology International, 19, 177-189.

[10]   Coustère, C., Mentré, F., Sommadossi, J.P., Diasio, R.B. and Steimer, J.L. (1991) A Mathematical Model of the Kinetics of 5-Fluorouracil and Its Metabolites in Cancer Patients. Cancer Chemotherapy and Pharmacology, 28, 123-129.

[11]   Fraile, R.J., Baker, L.H., Buroker, T.R., Horwitz, J. and Vaitkevicius, V.K. (1980) Pharmacokinetics of 5-fluorouracil Administered Orally, by Rapid Intravenous and by Slow Infusion. Cancer Research, 40, 2223-2228.

[12]   Ploylearmsaeng, S.A., Fuhr, U. and Jetter, A. (2006) How May Anticancer Chemotherapy with Fluorouracil Be Individualized? Clinical Pharmacokinetics, 45, 567-592.

[13]   van Kuilenburg, A.B. and Maring, J.G. (2013) Evaluation of 5-Fluorouracil Pharmacokinetic Models and Therapeutic Drug Monitoring in Cancer Patients. Pharmacogenomics, 14, 799-811.

[14]   Gamelin, E.C., Delva, R., Jacob, J., Merrouche, Y., Raoul, J.L., Pezet, D., Dorval, E., Piot, G., Morel, A. and Boisdron-Celle, M. (2008) Individual Fluorouracil Dose Adjustment Based on Pharmacokinetic Follow-Up Compared with Conventional Dosage: Results of a Multicenter Randomized Trial of Patients with Metastatic Colorectal Cancer. Journal of Clinical Oncology, 26, 2099-2105.

[15]   Davey, P. and Tudhope, G.R. (1983) Anticancer Chemotherapy. British Medical Journal (Clin Res Ed), 287, 110-113.

[16]   DeVita, Hellman, and Rosenberg’s Cancer: Principles and Practice of Oncology (Cancer: Principles & Practice (DeVita). 9th Edition, 2011, Lippincott Williams and Wilkins, Philadelphia.

[17]   Berrak, S.G., Ewer, M.S., Jaffe, N., Pearson, P., Ried, H., Zietz, H.A. and Benjamin, R.S. (2001) Doxorubicin Cardiotoxicity in Children: Reduced Incidence of Cardiac Dysfunction Associated with Continuous-Infusion Schedules. Oncology Reports, 8, 611-614.

[18]   Weiss, A.J., Stoloff, I.L., Simoes, A.C. and Lackman, R.D. (2014) The Relation between the Initial Type of Schedule Used to Administer Doxorubicin and Long Term Doxorubicin Cardiotoxicity. Journal of Cancer Therapy, 5, 1145-1152.

[19]   Ramalingam, S., Perry, M.C., La Rocca, R.V., Rinaldi, D., Gable, P.S., Tester, W.J. and Belani, C.P. (2008) Comparison of Outcomes for Elderly Patients Treated with Weekly Paclitaxel in Combination with Carboplatin versus the Standard 3-Weekly Paclitaxel and Carboplatin for Advanced Nonsmall Cell Lung Cancer. Cancer, 113, 542-546.

[20]   Maehara, Y., Nagayama, S., Okazaki, H., Nakamura, H., Shirasaka, T. and Fujii, S. (1981) Metabolism of 5-Fluorouracil in Various Human Normal and Tumor Tissues. Gan, 72, 824-827.

[21]   Tanaka-Nozaki, M., Onda, M., Tanaka, N. and Kato, S. (2001) Variations in 5-Fluorouracil Concentrations of Colorectal Tissues as Compared with Dihydropyrimidine Dehydrogenase (DPD) Enzyme Activities and DPD Messenger RNA Levels. Clinical Cancer Research, 7, 2783-2787.

[22]   Presant, C.A., Wolf, W., Waluch, V., Wiseman, C., Kennedy, P., Blayney, D., Brechner, R.R., et al. (1994) Association of Intratumoral Pharmacokinetics of Fluorouracil with Clinical Response. Lancet, 343, 1184-1187.

[23]   Takiguchi, N., Saito, N., Nunomura, M., Kouda, K., Oda, K., Furuyama, N. and Nakajima, N. (2001) Use of 5-FU Plus Hyperbaric Oxygen for Treating Malignant Tumors: Evaluation of Antitumor Effect and Measurement of 5-FU in Individual Organs. Cancer Chemotherapy and Pharmacology, 47, 11-14.

[24]   Sasako, M., Terashima, M., Ichikawa, W., Ochiai, A., Kitada, K., Kurahashi, I., Sakuramoto, S., Katai, H., Sano, T. and Imamura, H. (2014) Impact of the Expression of Thymidylate Synthase and Dihydropyrimidine Dehydrogenase Genes on Survival in Stage II/III Gastric Cancer. Gastric Cancer, Epub ahead of print.

[25]   Pratt, S., Shepard, R.L., Kandasamy, R.A., Johnston, P.A., Perry III, W. and Dantzig, A.H. (2005) The Multidrug Resistance Protein 5 (ABCC5) Confers Resistance to 5-Fluorouracil and Transports Its Monophosphorylated Metabolites. Molecular Cancer Therapeutics, 4, 855-863.

[26]   Guo, Y., Kotova, E., Chen, Z., Lee, K., Hopper-Borge, E., Belinsky, M.G. and Kruh, G.D. (2003) MRP8, ATP-Binding Cassette C11 (ABCC11), Is a Cyclic Nucleotide Efflux Pump and a Resistance Factor for Fluoropyrimidines 2′,3′-dideoxycytidine and 9′-(2′-phosphonylmethoxyethyl)adenine. Journal of Biological Chemistry, 278, 29509-29514.

[27]   Kruh, G., Zeng, H., Rea, P., Liu, G.S., Chen, Z.S., Lee, K. and Belinsky, M.G. (2001) MRP Subfamily Transporters and Resistance to Anticancer Agents. Journal of Bioenergetics and Biomembranes, 33, 493-501.

[28]   Adachi, M., Reid, G. and Schuetz, J. (2002) Therapeutic and Biological Importance of Getting Nucleotides Out of Cells: A Case for the ABC Transporters, MRP4 and 5. Advanced Drug Delivery Reviews, 54, 1333-1342.

[29]   Weiss, A.J., Barrueco, C.J., Kocsis, J.J. and Bianchi, C. (1984) Doxorubicin Efflux from Isolated Rat Hearts at 37% and 25% C. Federation of American Societies for Experimental Biology (Pharmacology).

[30]   Loveless, H., Arena, E., Felsted, R.L. and Bachur, N.R. (1978) Comparative Mammalian Metabolism of Adriamycin and Daunorubicin. Cancer Research, 38, 593-598.

[31]   Hartmann, G., Vassileva, V. and Piquette-Miller, M. (2005) Impact of Endotoxin-Induced Changes in P-Glycoprotein Expression on Disposition of Doxorubicin in Mice. Drug Metabolism and Disposition, 33, 820-828.

[32]   Fontanella, C., Aita, M., Cinausero, M., Aprile, G., Baldin, M.G., Dusi, V., Lestuzzi, C., Fasola, G. and Puglisi, F. (2014) Capecitabine-Induced Cardiotoxicity: More Evidence or Clinical Approaches to Protect the Patients’ Heart? OncoTargets and Therapy, 7, 1783-1791.

[33]   Polk, A., Vistisen, K., Vaage-Nilsen, M. and Nielsen, D. (2014) A Systematic Review of the Pathophysiology of 5-Fluorouracil-Induced Cardiotoxicity. BMC Pharmacology and Toxicology, 15, 47.

[34]   Saif, M.W., Garcon, M.C., Rodriguez, G. and Rodriguez, T. (2013) 5-Fluorouracil as an Alternative in Patients with Cardiotoxicity Associated with Infusion 5-Fluorouracil and Capecitabine: A Case Series. In Vivo, 27, 531-534.

[35]   Kosmas, C., Kallistratos, M.S., Kopterides, P., Syrios, J., Skopelitis, H., Mylonakis, N., Karabelis, A. and Tsavaris, N. (2008) Cardiotoxicity of Fluoropyrimidines in Different Schedules of Administration: A Prospective Study. Journal of Cancer Research and Clinical Oncology, 134, 75-82.

[36]   Tsavaris, N., Kosmas, C., Vadiaka, M., Efremidis, M., Zinelis, A., Beldecos, D., Sakelariou, D., Koufos, C. and Stamatelos, G. (2002) Cardiotoxicity Following Different Doses and Schedules of 5-Fluorouracil Administration for Malignancy—A Survey of 427 Patients. Medical Science Monitor, 8, PI51-P157.

[37]   Lamberti, M., Porto, S., Zappavigna, S., Addeo, E., Marra, M., Miraglia, N., Sannolo, N., Vanacore, D., Stiuso, P. and Caraglia, M. (2014) A Mechanistic Study on the Cardiotoxicity of 5-Fluorouracil in Vitro and Clinical and Occupational Perspectives. Toxicology Letters, 227, 151-156.

[38]   Pacciarini, M.A., Barbieri, B., Colombo, T., Broggini, M., Garattini, S. and Donelli, M.G. (1978) Distribution and Antitumor Activity of Adriamycin Given in a High Dose and a Repeated Low-Dose Schedule to Mice. Cancer Treatment Reports, 62, 791-800.