Back
 ACES  Vol.5 No.2 , April 2015
Basic Engineering of a Two-Stage Process for Co-Upgrading Natural Gas and Petroleum Coke
Abstract: This communication highlights the possibility of using a novel two-stage process for the co-upgrading of natural gas and petroleum coke into liquid hydrocarbons. The first stage consists of the catalytic dehydroaromatization of methane characterized by producing hydrogen and aromatics: benzene, naphtalene, toluene, etc. The non-reacted methane plus hydrogen and aromatics produced in the first stage are directed to the second stage to react with the petroleum coke. Basic engineering analysis of proposed two-stage process suggests light petroleum production of 160,000 bbl/day from 20,000 ton/day of petroleum coke actually by-produced from Venezuelan Orinoco’s heavy oil belt. Residual coke should be volatiles free therefore useful as a calcined coke.
Cite this paper: Laine, J. and Tosta, M. (2015) Basic Engineering of a Two-Stage Process for Co-Upgrading Natural Gas and Petroleum Coke. Advances in Chemical Engineering and Science, 5, 129-133. doi: 10.4236/aces.2015.52014.
References

[1]   Ma, S.Q., Guo, X.G., Zhao, L.X., Scottc, S. and Bao, X.H. (2013) Recent Progress in Methane Dehydroaromatization: From Laboratory Curiosities to Promising Technology. Review. Journal of Energy Chemistry, 22, 1-20.
http://dx.doi.org/10.1016/S2095-4956(13)60001-7

[2]   Calkins, W.H. and Bonifaz, C. (1984) Coal Flash Pyrolysis: 5. Pyrolysis in an Atmosphere of Methane. Fuel, 63, 1716-1719.
http://dx.doi.org/10.1016/0016-2361(84)90106-6

[3]   Voigtmann, M.F., Chen, M. and Batts, B.D. (1995) Coal Pyrolysis with Methane in a Reducing Environment. Coal Science and Technology, 24, 1399-1402.
http://dx.doi.org/10.1016/S0167-9449(06)80066-2

[4]   Cai, J.Q., Wang, Y.P. and Huang, Q.W. (2008) Rapid Liquefaction of Longkou Lignite Coal by Using a Tubular Reactor under Methane Atmosphere. Fuel, 87, 3388-3392.
http://dx.doi.org/10.1016/j.fuel.2008.06.001

[5]   Yang, K., Batts, B.D., Wilson, M.A., Gorbaty, M.L., Maa, P.S., Long, M.A., He, S.X.J. and Attalla, M.I. (1997) Reaction of Methane with Coal. Fuel, 76, 1105-1115.
http://dx.doi.org/10.1016/S0016-2361(97)00134-8

[6]   Kamei, O., Onoe, K., Marushima, W. and Yamaguchi, T. (1998) Brown Coal Conversion by Microwave Plasma Reactions under Successive Supply of Methane. Fuel, 77, 1503-1506.
http://dx.doi.org/10.1016/S0016-2361(98)00055-6

[7]   Dry, M.E. (1981) The Fischer-Tropsch synthesis. In: Anderson, J.R. and Boudart, M., Eds., Catalysis Science and Technology, Springer-Verlag, Berlin, Vol. 1, 159-255.

[8]   Winslow, J. and Schmetz, E. (2009) Direct Coal Liquefaction Overview Presented to NETL.
http://bellona.org/filearchive/fil_Direct_Coal_Liquefaction_Overview.pdf

[9]   Muradov, N., Smith, F. and Raissi, A. (2005) Catalytic Activity of Carbons for Methane Decomposition Reaction. Catalysis Today, 102, 225-233.
http://dx.doi.org/10.1016/j.cattod.2005.02.018

[10]   Bai, Z.Q., Chen, H.K., Li, W. and Li, B.Q. (2006) Hydrogen Production by Methane Decomposition over Coal Char. International Journal of Hydrogen Energy, 31, 899-905.
http://dx.doi.org/10.1016/j.ijhydene.2005.08.001

[11]   Quintero, D., Padilla, D., Labady, M. and Laine, J. (2007) A Transient Behavior in the Initial Production of Aromatic Compounds from Methane Catalyzed by Mo/HZSM-5. Catalysis Letters, 118, 244-247.
http://dx.doi.org/10.1007/s10562-007-9177-7

[12]   Heinemann, H. (1981) A Brief History of Industrial Catalysis. In: Anderson, J.R. and Boudart, M., Eds., Catalysis Science and Technology, Vol. 1, Springer-Verlag, Berlin, 1-41.

[13]   Ma, H.T., Kojima, R., Kikuchi, S. and Ichikawa, M. (2005) Effective Coke Removal in Methane to Benzene (MTB) Reaction on Mo/HZSM-5 Catalyst by H2 and H2O Co-Addition to Methane. Catalysis Letters, 104, 63-66.
http://dx.doi.org/10.1007/s10562-005-7437-y

[14]   Shu, Y.Y., Ma, D., Xu, L.Y., Xu, Y.D. and Bao, X.H. (2000) Methane Dehydro-Aromatization over Mo/MCM-22 Catalysts: A Highly Selective Catalyst for the Formation of Benzene. Catalysis Letters, 70, 67-73.
http://dx.doi.org/10.1023/A:1019079603279

[15]   Jin, L.J., Zhou, X., He, X.F. and Hu, H.Q. (2013) Integrated Coal Pyrolysis with Methane Aromatization over Mo/HZSM-5 for Improving Tar Yield. Fuel, 114, 187-190.
http://dx.doi.org/10.1016/j.fuel.2012.01.024

[16]   Laine, J. and Becerra, O. (1985) A Semi-Continuous Flow Reactor Technique for Coal Liquefaction Studies. Fuel Processing Technology, 11, 127-132.
http://dx.doi.org/10.1016/0378-3820(85)90023-2

[17]   Ovalles, C., Hamana, A., Rojas, I. and Bolívar, R.A. (1995) Upgrading of Extra-Heavy Crude Oil by Direct Use of Methane in the Presence of Water: Deuterium-Labelled Experiments and Mechanistic Considerations. Fuel, 74, 1162-1168.
http://dx.doi.org/10.1016/0016-2361(95)00071-C

[18]   Z’Graggen, A., Haueter, P., Trommer, D., Romero, M., de Jesus, J.C. and Steinfeld, A. (2006) Hydrogen Production by Steam-Gasification of Petroleum Coke Using Concentrated Solar Power—II Reactor Design, Testing, and Modeling. International Journal of Hydrogen Energy, 31, 797-811.
http://dx.doi.org/10.1016/j.ijhydene.2005.06.011

[19]   Zhang, J.B., Jin, L.J., He, X.F., Liu, S.B. and Hu, H.Q. (2011) Catalytic Methane Decomposition over Activated Carbons Prepared from Direct Coal Liquefaction Residue by KOH Activation with Addition of SiO2 or SBA-15. International Journal of Hydrogen Energy, 36, 8978-8984.
http://dx.doi.org/10.1016/j.ijhydene.2011.04.205

[20]   Laine, J. (2012) Perspective of the Preparation of Agrichars Using Fossil Hydrocarbon Coke. Renewable and Sustainable Energy Reviews, 16, 5597-5602.
http://dx.doi.org/10.1016/j.rser.2012.06.009

 
 
Top