MSCE  Vol.3 No.1 , January 2015
Numerical Simulation of Mechanical Properties of Nano Particle Modified Polyamide 6 via RVE Modeling
ABSTRACT

In this paper the physical influences on the mechanical behavior of a Polyamide 6 (PA 6)/Mont- morillonit (MMT)-nanocomposite are examined by a selected structure modification in a numerical parameter study. Experimental data of tensile tests of three different volume fractions at ambient temperature are used as reference. These were compared to homogenized stress-strain curves calculated with 3D representative volume elements (RVE) under periodic boundary conditions, in which the curve areas are considered until the tensile yield strength is reached. Besides the influence of filler orientation, exfoliation and its volume fraction, both adhesive interface behavior between the filler and matrix, and local partially crystalline interphases around the MMT-plates were also taken into account. A good approximation of the numerical representation of the experimental curves was achieved only after the introduction of the 30 - 40 nm thick partially crystalline interphases with higher stiffness and strength around the MMT-plates. The use of an exclusively isotropic matrix led to an underestimation of the mechanical values. The local modifications of the morphology were assumed to be transversely isotropic both in the elastic and in the plastic region. The transverse plane is defined by the lateral particle surface. Compared with the experimentally determined values of the corresponding Young’s Modulus, an excellent correlation was achieved. The yield strength for the largest volume fraction shows the best agreement with experimental values.


Cite this paper
Huang, J. , Uhrig, M. , Weber, U. and Schmauder, S. (2015) Numerical Simulation of Mechanical Properties of Nano Particle Modified Polyamide 6 via RVE Modeling. Journal of Materials Science and Chemical Engineering, 3, 95-102. doi: 10.4236/msce.2015.31014.
References
[1]   Sarbadi, M.R. (2011) Study of the Influence of Nanoparticles on the Performance and the Properties of Polyamid 6. Universität, Institut für Polymerchemie, Diss., Stuttgart.

[2]   Bienmüller, M., Joachimi, D., Klein, A. and Münker, M. (2013) Polyamid 6 und 66 (PA 6 und 66) Kunststoffe, Heft 63, S. 68-78.

[3]   Bhattacharya, S.N., Gupta, R.K. and Kamal, M.R. (2008) Polymeric Nanocomposites. Theory and Practice. Hanser, München. ISBN 978-3-446-40270-6.

[4]   Zhang, M.Q., Rong, M.Z. and Ruan, W.H. (2009) Nano- and Micromechanics of Polymer Blends and Composites. Chapter 3. Nanoparticles. Polymer Composites: Fabrication and Mechanical Properties. Hanser, S., München, 93-140. ISBN 978-3-446-41323-8.

[5]   Dasari, A. (2009) Nano-and Micromechanics of Polymer Blends and Composites. Chapter 11. Fracture Properties and Mechanisms of Polyamid. Clay Nanocomposites, Hanser, S., München, 377-423. ISBN 978-3-446-41323-8.

[6]   Dominkovics, Z., et al. (2013) Effect of Clay Modification on the Mechanism of Local Deformations in PA6 Nanocomposites. Macromolecular Materials and Engineering, Band 298, Heft 7, S., 796-805.

[7]   Jancar, J. (2009) Nano- and Micromechanics of Polymer Blends and Composites. Chapter 7. Interphase Phenomena in Polymer Micro- and Nanocomposites, Hanser, S., München, 241-266. ISBN 978-3-446-41323-8.

[8]   Sheng, N., et al. (2004) Multiscale Micromechanical Modeling of Polymer/Clay Nanocom-posites and the Effective Clay Particle, Polymer, Band 45, Heft 2, S. 487-506.

[9]   Praktikum “Werkstoff- und Bau-teilprüfung” (2013) Experimentelle Spannungsanalyse mit Dehnungsmessstreifen und ARAMIS. Stuttgart, Universität, Institut für Materialprüfung, Werkstoffkunde und Festigkeitslehre, Praktikumsunterlagen.

[10]   Tzika, P.A., Boyce, M.C. and Parks, D.M. (2000) Micromechanics of Deformation in Particle-Toughened Polyamides. Journal of the Mechanics and Physics of Solids, 48, 1893-1929.

[11]   Michler, G.H. and Baltá-Calleja, F.J. (2012) Nano- and Micromechanics of Polymers. Structure Modification and Improvement of Properties. Hanser, München. ISBN 978-3-446-42767-9. http://dx.doi.org/10.3139/9783446428447

[12]   Gitman, I.M., Askes, H. and Sluys, L.J. (2007) Representative Volume: Existence and Size Determination. Engineering Fracture Mechanics, Band 74, Heft 16, S. 2518-2534,.

[13]   Geier, S. (2011) Optimierung von Steifigkeit/Zähigkeits-Eigenschaften nanoskaliger Polyamid 6—Verbund werkstoffe durch Analyse von Struktur/Eigenschafts—Korrelationen, University of Stuttgart, Institute for Polymer Technology, Diss.

[14]   IKT, Institute for Polymer Technology, University of Stuttgart.

[15]   Dutschk, V. (2000) Oberflächenkräfte und ihr Beitrag zu Adhäsion und Haftung in glasfaserversträrkten Thermoplasten. Dresden, Technische Universität, Fakultät Maschinenwesen, Diss.

[16]   Jurhart, J. (2011) Adhäsion von UHPC an Stahl und Glas. Ein Beitrag zu Adhäsion und Haftfestigkeit von Hochleistungs- und Ultra-Hochleistungs-Feinkornbeton an Stahl und Glas unterschiedlicher Rauheit. Technische Universität, Fakultät für Bauingenieurwissenschaften, Graz.

[17]   He, C., et al. (2008) Microdeformation and Fracture Mechanisms in Polyamide-6/Organoclay Nanocomposites. Macromolecules, 41, 193-202. http://dx.doi.org/10.1021/ma071781s

[18]   Weber, U. (2011) Cohesive Modeling with ABAQUS: Some General Remarks. University of Stuttgart, Institute for Materials Testing, Materials Science and Strength of Materials, Internal Semina.

[19]   Borse, N.K. and Kamal, M.R. (2006) Melt Processing Effects on the Structure and Mechanical Properties of PA-6/Clay Nanocomposites. Polymer Engineering & Science, 46, 1094-1103.

 
 
Top