A Numerical study of the flow with heat Transfer of a Pseudoplastic fluid Between Parallel Plates

References

[1] G. Astarita and G. Marrucci, “Principles of Non- Newtonian Fluid Mechanics,” McGraw Hill, London, 1974.

[2] R. B. Bird, R. C. Armstrong and O. Hassager, “Dynamics of Polymeric Liquids, Fluid Mechanics,” Wiley, New York, 1987.

[3] M. Moradi, “Laminar Flow Heat Transfer of a Pseudoplastic Fluid through a Double Pipe Heat Exchanger,” Iranian Journal of Chemical Engineering, Vol. 3, No. 2, 2006, pp. 13-19.

[4] M. Massoudi and I. Christie, “Effects of Variable Viscosity and Viscous Dissipation on the Flow of a Third Grade Fluid in a Pipe,” International Journal of Non-Linear Mechanics, Vol. 30, No. 5, 1995, pp. 687-699.

[5] doi:10.1016/0020-7462(95)00031-I

[6] A. M. Siddiqui, A. Zeb, Q. K. Ghori and A. M. Benharbit, “Homotopy Perturbation Method for Heat Transfer Flow of a Third Grade Fluid between Parallel Plates,” Chaos Solitons and Fractals, Vol. 36, No. 1, 2008, pp. 182-192.

[7] T. Hayat, K. Maqbool and M. Khan, “Hall and Heat Transfer Effects on the Steady Flow of a Generalized Burger's Fluid Induced by Sudden Pull of Eccentric Rotating Disks,” Nonlinear Dynamics, Vol. 51, No. 1-2, 2008, pp. 267-276. doi:10.1007/s11071-007-9209-2

[8] F. L. Stasa, “Applied Finite Element Analysis for Engineers, ” CBS Publishing, 1985.

[9] O. C. Zienkiewicz, “The Finite Element Method,” McGraw Hill, London, 1977.

[10] S. Iqbal, A. M. Mirza and I. A. Tirmizi, “Galerkin’s Finite Element Formulation of the Second-Order Boundary-Value Problems,” International Journal of Computer Mathematics, Vol. 87, No. 9, 2010, pp. 2032-2042.

[11] doi:10.1080/00207160802562580

[12] S. Iqbal and N. A. Memon, “Numerical Solution of Singular Two-Point Boundary Value Problems Using Galerkin's Finite Element Method,” Quaid-e-Awam University Research Journal of Engineering, Science and Technology (QUEST-RJ), Vol. 9, No. 1, 2010, pp. 14-19.

[13] J. A. Deiber and A. S. M. Santa Cruz, “On Non-Newtonian Fluid Flow through a Tube of Circular Cross Section,” Latin American. Journal of Chemistry Engineering and Applied Chemistry, Vol. 14, 1984, pp. 19-38.

[14] R. E. Bellman and R. E. Kalaba, “Quasilinearizalion and Nonlinear Boundary-Value Problems,” American Elsevier, New York, 1965.