Application of Scale Relativity (ScR) Theory to the Problem of a Particle in a Finite One-Dimensional Square Well (FODSW) Potential

Show more

References

[1] L. Nottale, “The Theory of Scale Relativity,” International Journal of Modern Physics A, Vol. 7, No. 20, 1992, pp. 4899-4936. doi:10.1142/S0217751X92002222

[2] L. Nottale, “Fractal Space-Time and Microphysics: Towards a Theory of Scale Relativity,” World Scientific, Singapore, 1998.

[3] L. Nottale, “The Scale Relativity Program,” Chaos, Solitons and Fractals, Vol. 10, No. 2-3, 1994, pp. 459-468.

[4] doi:10.1016/S0960-0779(98)00195-7

[5] L. Nottale, “Scale Relativity and Fractal Space-Time: Application to Quantum Physics, Cosmology and Chaotic Systems,” Chaos, Solitons and Fractals, Vol. 7, No. 6, 1996, pp. 877-938. doi:10.1016/0960-0779(96)00002-1

[6] L. Nottale, “Scale Relativity, Fractal Space-Time and Quantum Mechanics,” Chaos, Solitons and Fractals, Vol. 4, No. 3, 1994, pp. 361-388.

[7] doi:10.1016/0960-0779(94)90051-5

[8] L. Nottale, “Scale Relativity, Fractal Space-Time and Morphogenesis of Structures”, Sciences of the Interface, Proceedings of Interna-tional Symposium in Honor of O. Rossler, ZKM Karlsruhe, 2000, p. 38.

[9] L. Nottale, “Scale Relativity,” Reprinted from “Scale Invariance and Beyond,” In: B. Dubralle, F. Graner and D. Sornette, Eds., Proceedings of Les Houches, EDP Science, 1997, pp. 249-261.

[10] L. Nottale, “Scale Relativity and Quantization of the Universe-I, Theoretical Framework,” As-tronomy and Astrophysics, Vol. 327, No. 3, 1997, pp. 867-889.

[11] L. Nottale, G. Schumacher and J. Gray, “Scale Relativity and Quantization of the Solar System,” Astronomy and Astrophysics, Vol. 322, No. 3, 1997, pp. 1018-1025.

[12] L. Nottale and M. N. Célérier, “Derivation of the Postulates of Quantum Mechanics from the First Principles of Scale Relativity,” Journal of Physics A: Mathematical and Theoretical, 2007, Vol. 40, No. 48, pp. 14471-14498.

[13] doi:10.1088/1751-8113/40/48/012

[14] M.-N. Célérier and L. Nottale, “Electromagnetic Klein-Gordon and Dirac equations in scale relativity,” International Journal of Modern Physics A, Vol. 25, No. 22, 2010, pp. 4239-4253.

[15] L. Nottale, “On the Transition from the Clas-sical to the Quantum Regime in Fractal Space-Time Theory,” Chaos, Solitons and Fractals, 2005, Vol. 25, No. 4, pp. 797-803.

[16] doi:10.1016/j.chaos.2004.11.071

[17] R. P. Hermann, “Numerical Simulation of a Quantum Particle in a Box,” Journal of Physics A: Mathematical and General, Vol. 30, No. 11, 1997, pp. 3967-3975.

[18] doi:10.1088/0305-4470/30/11/023

[19] L. I. Schiff., “Quantum Mechanics,” 3rd Edition, Int. Student, McGraw-Hill, New York, 1969.

[20] S. Gasiorowicz, “Quan-tum Physics,” John Wiley and Sons, New York, 1974.

[21] J. L. Powell and B. Crasemann, “Quantum Mechan-ics,”

[22] Addison-Wesley Co., Inc., Massachusetts, 1961.

[23] C. C. Tannoudji, B. Diue and F. Laloё, “Quantum me-

[24] chanics,” John Wiley and Sons, New York, 1977.

[25] W. T. Reid, “Riccati Differential Equations,” Aca-demic Press, New York, 1972.

[26] F. Charlton, “Integrating Factor for First-Order Differential Equations,” Classroom Notes, Aston University, Birmingham, 1998.

[27] N. Bessis and G. Bessis, “Open Perturbation and Riccati Equation: Alge-braic Determination of Quartic Anharmonic Oscillator Energies and Eigenfunctions,” Journal of Mathematical Physics, Vol. 38, No. 11, 1997, pp. 5483-5492. doi:10.1063/1.532147

[28] G. W. Rogers, “Riccati Equation and Perturbation Expansion in Quantum Mechanics,” Journal of Mathematical Physics, Vol. 26, No. 14, 1985, pp. 567-575.

[30] R. H. Dicke and J. P. Wittke, “Introduction to Quantum Mechanics,” Addi-son-Wesley Co., Inc., Massachusetts, 1960.

[31] D. Po?ani?, “Bound State in a One-dimensional Square Potential Well in Quantum Mechanics,” Classroom Notes, University of Virginia, Charlottesville, 2002.