CellBio  Vol.4 No.1 , March 2015
Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration
Abstract: Macrophages play a crucial role in detecting, regulating, and resolving immune crises, requiring migration through complex extracellular matrices. Unwarranted macrophage inflammatory activity potentiates kidney disease, rheumatoid arthritis, and transplant rejection. Proper remodeling of the actin cytoskeleton, especially at adhesion structures, is essential to the translocation of macrophages. Macrophages form actin-rich adhesions termed “podosomes”, giving them the capacity to make contacts with the substratum for traction through interstitial tissues. Macrophages express multiple formins, including FMNL1, Dia1, and Fhod1, with potential to impact actin remodeling involved in migration. Formins are a family of proteins that are best known for modifying the actin cytoskeleton via nucleation, elongation, bundling, and/or severing actin filaments. In this study we demonstrate that the formin FMNL1 is a key regulator of podosomes and is required for normal macrophage migration. Additionally, this is the first study to demonstrate defects in primary human cell migration resulting from specific formin silencing. Pharmacologic inhibition of all formin activity results in a significant decrease in podosome formation and normal macrophage migration. Furthermore, targeted suppression of FMNL1 results in decreases in macrophage migration similar to inhibition of all expressed macrophage formins. These novel findings suggest FMNL1 as a possible chemotherapeutic target to hinder macrophage migration, which could offer an innovative method for limiting unnecessary macrophage-mediated inflammation. We hypothesize that formins are required in podosome actin dynamics to support macrophage migration.
Cite this paper: R. Miller, M. and Blystone, S. (2015) Human Macrophages Utilize the Podosome Formin FMNL1 for Adhesion and Migration. CellBio, 4, 1-11. doi: 10.4236/cellbio.2015.41001.

[1]   Luxenburg, C., Geblinger, D., Klein, E., Anderson, K., Hanein, D., Geiger, B. and Addadi, L. (2007) The Architecture of the Adhesive Apparatus of Cultured Osteoclasts: From Podosome Formation to Sealing Zone Assembly. PLoS One, 2, e179.

[2]   Cervero, P., Himmel, M., Kruger, M. and Linder, S. (2012) Proteomic Analysis of Podosome Fractions from Macrophages Reveals Similarities to Spreading Initiation Centres. European Journal of Cell Biology, 91, 908-922.

[3]   Davies, W.A. and Stossel, T.P. (1977) Peripheral Hyaline Blebs (Podosomes) of Macrophages. Journal of Cell Biology, 75, 941-955.

[4]   Marchisio, P.C., Bergui, L., Corbascio, G. C., Cremona, O., D’Urso, N., Schena, M., Tesio, L. and Caligaris-Cappio, F. (1988) Vinculin, Talin, and Integrins Are Localized at Specific Adhesion Sites of Malignant B Lymphocytes. Blood, 72, 830-833.

[5]   Duong, L.T. and Rodan, G.A. (2000) PYK2 Is an Adhesion Kinase in Macrophages, Localized in Podosomes and Activated by Beta(2)-Integrin Ligation. Cell Motility and the Cytoskeleton, 47, 174-188.<174::AID-CM2>3.0.CO;2-N

[6]   Evans, J.G., Correia, I., Krasavina, O., Watson, N. and Matsudaira, P. (2003) Macrophage Podosomes Assemble at the Leading Lamella by Growth and Fragmentation. Journal of Cell Biology, 161, 697-705.

[7]   Dong, R., Cwynarski, K., Entwistle, A., Marelli-Berg, F., Dazzi, F., Simpson, E., Goldman, J.M., Melo, J.V., Lechler, R.I., Bellantuono, I., Ridley, A. and Lombardi, G. (2003) Dendritic Cells from CML Patients Have Altered Actin Organization, Reduced Antigen Processing, and Impaired Migration. Blood, 101, 3560-3567.

[8]   Jones, G.E., Zicha, D., Dunn, G.A., Blundell, M. and Thrasher, A. (2002) Restoration of Podosomes and Chemotaxis in Wiskott-Aldrich Syndrome Macrophages Following Induced Expression of WASp. The International Journal of Biochemistry & Cell Biology, 34, 806-815.

[9]   Carman, C.V., Sage, P.T., Sciuto, T.E., de la Fuente, M.A., Geha, R.S., Ochs, H.D., Dvorak, H.F., Dvorak, A.M. and Springer, T.A. (2007) Transcellular Diapedesis Is Initiated by Invasive Podosomes. Immunity, 26, 784-797.

[10]   Cougoule, C., Van Goethem, E., Le Cabec, V., Lafouresse, F., Dupre, L., Mehraj, V., Mege, J.L., Lastrucci, C. and Maridonneau-Parini, I. (2012) Blood Leukocytes and Macrophages of Various Phenotypes Have Distinct Abilities to form Podosomes and to Migrate in 3D Environments. European Journal of Cell Biology, 91, 938-949.

[11]   Cougoule, C., Le Cabec, V., Poincloux, R., Al Saati, T., Mege, J.L., Tabouret, G., Lowell, C.A., Laviolette-Malirat, N. and Maridonneau-Parini, I. (2010) Three-Dimensional Migration of Macrophages Requires Hck for Podosome Organization and Extracellular Matrix Proteolysis. Blood, 115, 1444-1452.

[12]   Pruyne, D., Evangelista, M., Yang, C., Bi, E., Zigmond, S., Bretscher, A. and Boone, C. (2002) Role of Formins in Actin Assembly: Nucleation and Barbed-End Association. Science, 297, 612-615.

[13]   Wallar, B.J. and Alberts, A.S. (2003) The Formins: Active Scaffolds That Remodel the Cytoskeleton. Trends in Cell Biology, 13, 435-446.

[14]   Goode, B.L. and Eck, M.J. (2007) Mechanism and Func-tion of Formins in the Control of Actin Assembly. Annual Review of Biochemistry, 76, 593-627.

[15]   Copeland, J.W., Copeland, S.J. and Treisman, R. (2004) Homo-Oligomerization Is Essential for Factin Assembly by the Formin Family FH2 Domain. The Journal of Biological Chemistry, 279, 50250-50256.

[16]   Higgs, H.N. and Peterson, K.J. (2005) Phylogenetic Analysis of the Formin Homology 2 Domain. Molecular Biology of the Cell, 16, 1-13.

[17]   Kato, T., Watanabe, N., Morishima, Y., Fujita, A., Ishizaki, T. and Narumiya, S. (2001) Localization of a Mammalian Homolog of Diaphanous, mDia1, to the Mitotic Spindle in HeLa Cells. Journal of Cell Science, 114, 775-784.

[18]   Bretscher, A. (2003) Polarized Growth and Organelle Segregation in Yeast: The Tracks, Motors, and Receptors. The Journal of Cell Biology, 160, 811-816.

[19]   Yamana, N., Arakawa, Y., Nishino, T., Kurokawa, K., Tanji, M., Itoh, R.E., Monypenny, J., Ishizaki, T., Bito, H., Nozaki, K., Hashimoto, N., Matsuda, M. and Narumiya, S. (2006) The Rho-mDia1 Pathway Regulates Cell Polarity and Focal Adhesion Turnover in Migrating Cells through Mobilizing Apc and c-Src. Molecular and Cellular Biology, 26, 6844-6858.

[20]   Gupton, S.L., Eisenmann, K., Alberts, A.S. and Waterman-Storer, C.M. (2007) mDia2 Regulates Actin and Focal Adhesion Dynamics and Organization in the Lamella for Efficient Epithelial Cell Migration. Journal of Cell Science, 120, 3475-3487.

[21]   Young, K.G. and Copeland, J.W. (2010) Formins in Cell Signaling. Biochimica et Biophysica Acta, 1803, 183-190.

[22]   Mersich, A.T., Miller, M.R., Chkourko, H. and Blystone, S.D. (2010) The Formin FRL1 (FMNL1) Is an Essential Component of Macrophage Podosomes. Cytoskeleton, 67, 573-585.

[23]   Yayoshi-Yamamoto, S., Taniuchi, I. and Watanabe, T. (2000) FRL, a Novel Formin-Related Protein, Binds to Rac and Regulates Cell Motility and Survival of Macrophages. Molecular and Cellular Biology, 20, 6872-6881.

[24]   Harris, E.S., Li, F. and Higgs, H.N. (2004) The Mouse Formin, FRLalpha, Slows Actin Filament Barbed End Elongation, Competes with Capping Protein, Accelerates Polymerization from Monomers, and Severs Filaments. The Journal of Biological Chemistry, 279, 20076-20087.

[25]   Harris, E.S., Rouiller, I., Hanein, D. and Higgs, H.N. (2006) Mechanistic Differences in Actin Bundling Activity of Two Mammalian Formins, FRL1 and mDia2. The Journal of Biological Chemistry, 281, 14383-14392.

[26]   Esue, O., Harris, E.S., Higgs, H.N. and Wirtz, D. (2008) The Filamentous Actin Cross-Linking/Bundling Activity of Mammalian Formins. Journal of Molecular Biology, 384, 324-334.

[27]   Han, Y., Eppinger, E., Schuster, I.G., Weigand, L.U., Liang, X., Kremmer, E., Peschel, C. and Krackhardt, A.M. (2009) Formin-Like 1 (FMNL1) Is Regulated by N-Terminal Myristoylation and Induces Polarized Membrane Blebbing. The Journal of Biological Chemistry, 284, 33409-33417.

[28]   Colon-Franco, J.M., Gomez, T.S. and Billadeau, D.D. (2011) Dynamic Remodeling of the Actin Cytoskeleton by FMNL1gamma Is Required for Structural Maintenance of the Golgi Complex. Journal of Cell Science, 124, 3118-3126.

[29]   Rizvi, S.A., Neidt, E.M., Cui, J., Feiger, Z., Skau, C.T., Gardel, M.L., Kozmin, S.A. and Kovar, D.R. (2009) Identification and Characterization of a Small Molecule Inhibitor of Formin-Mediated Actin Assembly. Chemistry Biology, 16, 1158-1168.

[30]   Linder, S., Nelson, D., Weiss, M. and Aepfelbacher, M. (1999) Wiskott-Aldrich Syndrome Protein Regulates Podosomes in Primary Human Macrophages. Proceedings of the National Academy of Sciences of the United States of America, 96, 9648-9653.

[31]   Wilson, K., Lewalle, A., Fritzsche, M., Thorogate, R., Duke, T. and Charras, G. (2013) Mechanisms of Leading Edge Protrusion in Interstitial Migration. Nature Communications, 4, 2896.

[32]   Pankova, K., Rosel, D., Novotny, M. and Brabek, J. (2010) The Molecular Mechanisms of Transition between Mesenchymal and Amoeboid Invasiveness in Tumor Cells. Cellular and Molecular Life Sciences, 67, 63-71.

[33]   Le Cabec, V., Van Goethem, E., Guiet, R. and Maridonneau-Parini, I. (2011) Phagocyte Migration: An Overview. Médecine/Sciences, 27, 1112-1120.

[34]   Van Goethem, E., Poincloux, R., Gauffre, F., Maridonneau-Parini, I. and Le Cabec, V. (2010) Matrix Architecture Dictates Three-Dimensional Migration Modes of Human Macrophages: Differential Involvement of Proteases and Podosome-Like Structures. The Journal of Immunology, 184, 1049-1061.

[35]   Maridonneau-Parini, I. (2014) Control of Macrophage 3D Migration: A Therapeutic Challenge to Limit Tissue Infiltration. Immunological Reviews, 262, 216-231.

[36]   Krainer, E.C., Ouderkirk, J.L., Miller, E.W., Miller, M.R., Mersich, A.T. and Blystone, S.D. (2013) The Multiplicity of Human Formins: Expression Patterns in Cells and Tissues. Cytoskeleton, 70, 424-438.

[37]   Brandt, D.T., Marion, S., Griffiths, G., Watanabe, T., Kaibuchi, K. and Grosse, R. (2007) Dia1 and IQGAP1 Interact in Cell Migration and Phagocytic Cup Formation. The Journal of Cell Biology, 178, 193-200.

[38]   Naj, X., Hoffmann, A.K., Himmel, M. and Linder, S. (2013) The Formins FMNL1 and mDia1 Regulate Coiling Phagocytosis of Borrelia burgdorferi by Primary Human Macrophages. Infection and Immunity, 81, 1683-1695.

[39]   Van Goethem, E., Guiet, R., Balor, S., Charriere, G.M., Poincloux, R., Labrousse, A., Maridonneau-Parini, I. and Le Cabec, V. (2011) Macrophage Podosomes Go 3D. European Journal of Cell Biology, 90, 224-236.

[40]   Seth, A., Otomo, C. and Rosen, M.K. (2006) Autoinhibition Regulates Cellular Localization and Actin Assembly Activity of the Diaphanous-Related Formins FRLalpha and mDia1. The Journal of Cell Biology, 174, 701-713.