[1] Iijima, S. (1991) Helical Microtubules of Graphitic Carbon. Nature, 354, 56-58.
http://dx.doi.org/10.1038/354056a0
[2] Iijima, S. and Ichihashi, T. (1993) Single-Shell Nanotubes of 1-nm Diameter. Nature, 363, 603-605.
http://dx.doi.org/10.1038/363603a0
[3] Feng, D. (2005) Theoretical Study of the Stability of Defects in Single-Walled Carbon Nanotubes as a Function of Their Distance from the Nanotube End. Physical Review B, 72, 1-7.
[4] Bethune, D.S., Kiang, C.H., de Vries, M.S., Gorman, G., Savoy, R., Vasques, J. and Beyers, R. (1993) Cobalt-Catalyzed Growth of Carbon Nanotubes with Single-Atomic-Layer Walls. Nature, 363, 605-607.
http://dx.doi.org/10.1038/363605a0
[5] Yuhuang, W., Myung, J.K., Hongwei, S., Carter, K., Hua, F., Lars, M.E., Wen-Fang, H., Sivaram, A., Robert, H.H. and Richard, E.S. (2005) Continued Growth of Single-Walled Carbon Nanotubes. Nano Letters, 5, 997-1002.
http://dx.doi.org/10.1021/nl047851f
[6] Journet, C. and Bernier, P. (1998) Production of Carbon Nanotubes. Applied Physics A, 67, 1-9.
http://dx.doi.org/10.1007/s003390050731
[7] Bellucci, S., Gaggiotti, G., Marchetti, M., Micciulla, F., Mucciato, R. and Regi, M. (2007) Atomic Force Microscopy Characterization of Carbon Nanotubes. Journal of Physics: Conference Series, 61, 99-104.
[8] Yoshinori, A., Xinluo, Z., Sakae, I. and Iijimaa, S. (2002) Mass Production of Multiwalled Carbon Nanotubes by Hydrogen Arc Discharge. Journal of Crystal Growth, 237-239, 1926-1930.
http://dx.doi.org/10.1016/S0022-0248(01)02248-5
[9] Shi, Z., Lian, Y., Zhou, X., Gu, Z., Zhang, Y., Iijima, S., Zhou, L., Yue, T.K. and Zhang, S. (1999) Mass Production of Single-Wall Carbon Nanotubes by Arc Discharge Method. Carbon, 37, 1449-1453.
http://dx.doi.org/10.1016/S0008-6223(99)00007-X
[10] Stancu, M., Ruxanda, G., Ciuparu, D. and Dinescu, A. (2011) Purification of Multiwall Carbon Nanotubes Obtained by AC Arc Discharge Method. Optoelectronics and Advanced Materials, R5, 846-850.
[11] Hamada, N., Sawada, S. and Oshiyama, A. (1992) New One-Dimensional Conductors: Graphitic Microtubules. Physical Review Letters, 68, 1579-1581.
http://dx.doi.org/10.1103/PhysRevLett.68.1579
[12] Tans, S.J., Devoret, M.H., Dai, H., Thess, A., Smalley, R.E., Georliga, L.J. and Dekker, C. (1997) Individual Single-Wall Carbon Nanotubes as Quantum Wires. Nature, 386, 474-477.
http://dx.doi.org/10.1038/386474a0
[13] Tans, S.J., Verschueren, R.M. and Dekker, C. (1998) Room Temperature Transistor Based on a Single Carbon Nanotube. Nature, 393, 49-52.
http://dx.doi.org/10.1038/29954
[14] McEuen, P.L., Fuhrer, M.S. and Park, H. (2002) Single-Walled Carbon Nanotube Electronics. IEEE Transitions on Nanotechnology, 1, 78-85.
http://dx.doi.org/10.1109/TNANO.2002.1005429
[15] Garau, C., Frontera, A., Quinonero, D., Costa, A., Ballester, P. and Dey, P.M. (2003) Lithium Diffusion in Single-Walled Carbon Nanotubes: A Theoretical Study. Chemical Physics Letters, 374, 548-555.
http://dx.doi.org/10.1016/S0009-2614(03)00748-6
[16] de Heer, W.A., Chatelain, A. and Ugarte, D. (1995) A Carbon Nanotube Field-Emission Electron Source. Science, 270, 1179-1180.
http://dx.doi.org/10.1126/science.270.5239.1179
[17] Jensen, A., Hauptmann, J.R., Nyg?rd, J., Sadowski, J. and Lindelof, P.E. (2004) Hybrid Devices from Single Wall Carbon Nanotubes Epitaxially Grown into a Semiconductor Heterostructure. Nano Letters, 4, 349-352.
http://dx.doi.org/10.1021/nl0350027
[18] Martel, R., Schmidt, T., Shea, H.R., Hertel, T. and Avouris, P. (1998) Single-and Multi-Wall Carbon Nanotube Field-Effect Transistors. Applied Physics Letters, 73, 2447-2449.
http://dx.doi.org/10.1063/1.122477
[19] Tans, S.J., Verschueren, A.R.M. and Dekker, C. (1998) Room-Temperature Transistor Based on a Single Carbon Nanotube. Nature, 393, 49-52.
http://dx.doi.org/10.1038/29954
[20] Alexander, A.K., Sergey, B. Lee, M.Z., Baughman, R.H. and Zakhidov, A.A. (2010) Electron Field Emission from Transparent Multiwalled Carbon Nanotube Sheets for Inverted Field Emission Displays. Carbon, 48, 41-46.
http://dx.doi.org/10.1016/j.carbon.2009.08.009
[21] Chai, S.P., Zein, S.H.S. and Mohamed, A.R. (2004) A Review on Carbon Nanotubes Production via Catalytic Methane Decomposition. 1st National Postgraduate Colloquium School of Chemical Engineering USM NAPCOl, 60-69.
[22] Huang, S., Cai, X. and Liu, J. (2003) Growth of Millimeter-Long and Horizontally Aligned Single-Walled Carbon Nanotubes on Flat Substrates. Journal of the American Chemical Society, 125, 5636-5637.
http://dx.doi.org/10.1021/ja034475c
[23] Zhang, H., Fu, X., Yin, J., Zhou, C., Chen, Y., Li, M. and Wei, A. (2005) The Effects of MWNTs with Different Dia- meters on the Electrochemical Hydrogen Storage Capability. Physics Letters A, 339, 370-377.
http://dx.doi.org/10.1016/j.physleta.2005.03.013
[24] Mahanandia, P., Schneider, J.J., Engel, M., Stühn, B., Subramanyam, S.V. and Nanda, K.K. (2011) Studies towards Synthesis, Evolution and Alignment Characteristics of Dense, Millimeter Long Multiwalled Carbon Nanotube Arrays, Beilstein. Journal of Nanotechnology, 2, 293-301.
http://dx.doi.org/10.3762/bjnano.2.34
[25] Grobert, N. (2007) Carbon Nanotubes Becoming Clean. Materials Today, 10, 28-35.
http://dx.doi.org/10.1016/S1369-7021(06)71789-8
[26] Zhao, X. and Ando, Y. (1998) Raman Spectra and X-Ray Diffraction Patterns of Carbon Nanotubes Prepared by Hydrogen Arc Discharge. Japanese Journal of Applied Physics, 37, 4846-4849.
[27] Iqbal, M.W., Singh, A.K., Iqbal, M.Z. and Eom, J. (2012) Raman Fingerprint of Doping Due to Metal Adsorbates on Graphene. Journal of Physics Condensed Matter, 24, Article ID: 335301.
[28] Jeong, Y., Kim, J. and Lee, G.W. (2010) Optimizing Functionalization of Multiwalled Carbon Nanotubes Using Sodium Lignosulfonate. Colloid and Polymer Science, 288, 1-6.
http://dx.doi.org/10.1007/s00396-009-2127-8
[29] Dresselhaus, M.S., Rao, A.M. and Dresselhaus, G. (2004) Raman Spectroscopy in Carbon Nanotubes. Encyclopedia of Nanoscience and Nanotechnology, 9, 307-338.
[30] Li, H., He, X., Kang, Z., Huang, H., Liu, Y., Liu, J., Lian, S., Tsang, C.H.A., Yang, X. and Lee, S.-T. (2010) Water-Soluble Fluorescent Carbon Quantum Dots and Photocatalyst Design. Angewandte Chemie International Edition, 49, 4430-4434.
[31] Akhavan, O. (2011) Photocatalytic Reduction of Graphene Oxides Hybridized by ZnO Nanoparticles in Ethanol. Carbon, 49, 11-18.
http://dx.doi.org/10.1016/j.carbon.2010.08.030
[32] Caoa, A., Xua, C., Lianga, J., Wu, D. and Wei, B. (2001) X-Ray Diffraction Characterization on the Alignment Degree of Carbon Nanotubes. Chemical Physics Letters, 344, 13-17.
http://dx.doi.org/10.1016/S0009-2614(01)00671-6
[33] Khani, H. and Moradi, O. (2013) Influence of Surface Oxidation on the Morphological and Crystallographic Structure of Multi-Walled Carbon Nanotubes via Different Oxidants. Journal of Nanostructure in Chemistry, 3, 73.
[34] Wang, Z., Ba, D., Liu, F., Cao, P., Yang, T., Gu, Y. and Gao, H. (2005) Synthesis and Characterization of Large Area Well-Aligned Carbon Nanotubes by ECR-CVD without Substrate Bias. Vacuum, 77, 139-144.
http://dx.doi.org/10.1016/j.vacuum.2004.08.012
[35] Scherrer, P. (1918) Bestimmung der Größe und der innerenStruktur von Kolloidteilchen Mittels Röntgenstrahlen. P, Nachrichten von der Gesellschaft der Wissenschaften, Gttingen. Mathematisch-Physikalische Klasse, 2, 98-100.
[36] Ajayan, P.M. (1999) Nanotubes from Carbon. Chemical Reviews, 99, 1787-1799.
http://dx.doi.org/10.1021/cr970102g