ABC  Vol.5 No.2 , April 2015
A Role for Histone Chaperones in Regulating RNA Polymerase II
Abstract: Transcription is a highly regulated cellular process in which dysfunction leads to disease. One level of regulation is chromatin structure which protects promoters from transcription factor binding. To circumvent this blockade, histone chaperones aid in displacement of nucleosomes. In particular, the histone chaperone complex HUCA, consisting of Hira, Ubn1, Cabin1, and ASF1a, replaces histone variant H3.1 with H3.3 in front of actively transcribing RNA Polymerase II (RNAPII). The 26S proteasome is a major degrader of proteins within the cell and plays both proteolytic and non- proteolytic roles in transcriptional regulation. One major role is the degradation of irreversibly arrested RNAPII. Several interactions between HUCA, the 26S proteasome, and RNAPII have been characterized individually; we now present observations from our lab and others which directly associate elongating RNAPII with the degradation machinery through observations of involvement with the HUCA complex. Our short report presents these ideas and discusses their importance in transcriptional regulation as well as implications in disease manifestation.
Cite this paper: Osborn, J. and Greer, S. (2015) A Role for Histone Chaperones in Regulating RNA Polymerase II. Advances in Biological Chemistry, 5, 35-44. doi: 10.4236/abc.2015.52004.

[1]   Petesch, S.J. and Lis, J.T. (2012) Overcoming the Nucleosome Barrier during Transcript Elongation. Trends in Genetics, 28, 285-294.

[2]   Verma, R., Oania, R., Fang, R., Smith, G.T. and Deshaies, R.J. (2011) Cdc48/p97 Mediates UV-Dependent Turnover of RNA Pol II. Molecular Cell, 41, 82-92.

[3]   Auld, K.L., Brown, C.R., Casolari, J.M., Komili, S. and Silver, P.A. (2006) Genomic Association of the Proteasome Demonstrates Overlapping Gene Regulatory Activity with Transcription Factor Substrates. Molecular Cell, 21, 861-871.

[4]   Collins, G.A. and Tansey, W.P. (2006) The Proteasome: A Utility Tool for Transcription? Current Opinion in Genetics & Development, 16, 197-202.

[5]   Gillette, T.G., Gonzalez, F., Delahodde, A., Johnston, S.A. and Kodadek, T. (2004) Physical and Functional Association of RNA Polymerase II and the Proteasome. Proceedings of the National Academy of Sciences of the United States of America, 101, 5904-5909.

[6]   Krogan, N.J., Lam, M.H., Fillingham, J., Keogh, M.C., Gebbia, M., Li, J., et al. (2004) Proteasome Involvement in the Repair of DNA Double-Strand Breaks. Molecular Cell, 16, 1027-1034.

[7]   Scharf, A., Grozdanov, P.N., Veith, R., Kubitscheck, U., Meier, U.T. and von Mikecz, A. (2011) Distant Positioning of Proteasomal Proteolysis Relative to Actively Transcribed Genes. Nu-cleic Acids Research, 39, 4612-4627.

[8]   Luger, K., Mader, A.W., Richmond, R.K., Sargent, D.F. and Richmond, T.J. (1997) Crystal Structure of the Nucleosome Core Particle at 2.8 A Resolution. Nature, 389, 251-260.

[9]   Bannister, A.J. and Kouzarides, T. (2011) Regulation of Chromatin by Histone Modifications. Cell Research, 21, 381-395.

[10]   Zentner, G.E. and Henikoff, S. (2013) Regulation of Nucleosome Dynamics by Histone Modifications. Nature Structural & Molecular Biology, 20, 259-266.

[11]   Kireeva, M.L., Walter, W., Tchernajenko, V., Bondarenko, V., Kashlev, M. and Studitsky, V.M. (2002) Nucleosome Remodeling Induced by RNA Polymerase II: Loss of the H2A/H2B Dimer during Transcription. Molecular Cell, 9, 541-552.

[12]   Kelly, T.K., Liu, Y., Lay, F.D., Liang, G., Berman, B.P. and Jones, P.A. (2012) Genome-Wide Mapping of Nucleosome Positioning and DNA Methylation within Individual DNA Molecules. Genome Research, 22, 2497-506.

[13]   Fenouil, R., Cauchy, P., Koch, F., Descostes, N., Cabeza, J.Z., Innocenti, C., et al. (2012) CpG Islands and GC Content Dictate Nucleosome Depletion in a Transcription-Independent Manner at Mammalian Promoters. Genome Research, 22, 2399-2408.

[14]   Chang, C.H. and Luse, D.S. (1997) The H3/H4 Tetramer Blocks Transcript Elongation by RNA Polymerase II in Vitro. The Journal of Biological Chemistry, 272, 23427-23434.

[15]   Izban, M.G. and Luse, D.S. (1992) Factor-Stimulated RNA Polymerase II Transcribes at Physiological Elongation Rates on Naked DNA but Very Poorly on Chromatin Templates. The Journal of Biological Chemistry, 267, 13647-13655.

[16]   Hota, S.K. and Bartholomew, B. (2011) Diversity of Operation in ATP-Dependent Chromatin Remodelers. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1809, 476-487.

[17]   Eitoku, M., Sato, L., Senda, T. and Horikoshi, M. (2008) Histone Chaperones: 30 Years from Isolation to Elucidation of the Mechanisms of Nucleosome Assembly and Disassembly. Cellular and Molecular Life Sciences, 65, 414-444.

[18]   Tagami, H., Ray-Gallet, D., Almouzni, G. and Nakatani, Y. (2004) Histone H3.1 and H3.3 Complexes Mediate Nucleosome Assembly Pathways Dependent or Independent of DNA Synthesis. Cell, 116, 51-61.

[19]   Szenker, E., Ray-Gallet, D. and Almouzni, G. (2011) The Double Face of the Histone Variant H3.3. Cell Research, 21, 421-434.

[20]   Avvakumov, N., Nourani, A. and Cote, J. (2011) Histone Chaperones: Modulators of Chromatin Marks. Molecular Cell, 41, 502-514.

[21]   Burgess, R.J. and Zhang, Z. (2010) Histones, Histone Chaperones and Nucleosome Assembly. Protein & Cell, 1, 607-612.

[22]   Tang, Y., Poustovoitov, M.V., Zhao, K., Garfinkel, M., Canutescu, A., Dunbrack, R., et al. (2006) Structure of a Human ASF1a-HIRA Complex and Insights into Specificity of Histone Chaperone Complex Assembly. Nature Structural & Molecular Biology, 13, 921-929.

[23]   Tang, Y., Puri, A., Ricketts, M.D., Rai, T.S., Hoffmann, J., Hoi, E., et al. (2012) Identification of an Ubinuclein 1 Region Required for Stability and Function of the Human HIRA/UBN1/CABIN1/ASF1a Histone H3.3 Chaperone Complex. Biochemistry, 51, 2366-2377.

[24]   Rai, T.S., Puri, A., McBryan, T., Hoffman, J., Tang, Y., Pchelintsev, N.A., et al. (2011) Human CABIN1 Is a Functional Member of the Human HIRA/UBN1/ASF1a Histone H3.3 Chaperone Complex. Molecular and Cellular Biology, 31, 4107-4118.

[25]   Lamour, V., Lecluse, Y., Desmaze, C., Spector, M., Bodescot, M., Aurias, A., et al. (1995) A Human Homolog of the S. cerevisiae HIR1 and HIR2 Transcriptional Repressors Cloned from the DiGeorge Syndrome Critical Region. Human Molecular Genetics, 4, 791-799.

[26]   Lorain, S., Demczuk, S., Lamour, V., Toth, S., Aurias, A., Roe, B.A., et al. (1996) Structural Organization of the WD Repeat Protein-Encoding Gene HIRA in the DiGeorge Syndrome Critical Region of Human Chromosome 22. Genome Research, 6, 43-50.

[27]   Magnaghi, P., Roberts, C., Lorain, S., Lipinski, M. and Scambler, P.J. (1998) HIRA, a Mammalian Homologue of Sac-charomyces cerevisiae Transcriptional Co-Repressors, Interacts with Pax3. Nature Genetics, 20, 74-77.

[28]   Banumathy, G., Somaiah, N., Zhang, R., Tang, Y., Hoffmann, J., Andrake, M., et al. (2009) Human UBN1 Is an Ortholog of Yeast Hpc2p and Has an Essential Role in the HIRA/ASF1a Chromatin-Remodeling Pathway in Senescent Cells. Molecular and Cellular Biology, 29, 758-770.

[29]   Daganzo, S.M., Erzberger, J.P., Lam, W.M., Skordalakes, E., Zhang, R., Franco, A.A., et al. (2003) Structure and Function of the Conserved core of Histone Deposition Protein Asf1. Current Biology, 13, 2148-2158.

[30]   Prochasson, P., Florens, L., Swanson, S.K., Washburn, M.P. and Workman, J.L. (2005) The HIR Corepressor Complex Binds to Nucleosomes Generating a Distinct Protein/DNA Complex Resistant to Remodeling by SWI/SNF. Genes & Development, 19, 2534-2539.

[31]   Osley, M.A. and Lycan, D. (1987) Trans-Acting Regulatory Mutations That Alter Transcription of Saccharomyces cerevisiae Histone Genes. Molecular and Cellular Biology, 7, 4204-4210.

[32]   Dimova, D., Nackerdien, Z., Furgeson, S., Eguchi, S. and Osley, M.A. (1999) A Role for Transcriptional Repressors in Targeting the Yeast Swi/Snf Complex. Molecular Cell, 4, 75-83.

[33]   Wunsch, A.M. and Lough, J. (1987) Modulation of Histone H3 Variant Synthesis during the Myoblast-Myotube Transition of Chicken Myogenesis. Developmental Biology, 119, 94-99.

[34]   Ray-Gallet, D., Quivy, J.P., Scamps, C., Martini, E.M., Lipinski, M. and Almouzni, G. (2002) HIRA Is Critical for a Nucleosome Assembly Pathway Independent of DNA Synthesis. Molecular Cell, 9, 1091-1100.

[35]   Anderson, H.E., Wardle, J., Korkut, S.V., Murton, H.E., Lopez-Maury, L., Bahler, J., et al. (2009) The Fission Yeast HIRA Histone Chaperone Is Required for Promoter Silencing and the Suppression of Cryptic Antisense Transcripts. Molecular and Cellular Biology, 29, 5158-5167.

[36]   Llevadot, R., Scambler, P., Estivill, X. and Pritchard, M. (1996) Genomic Organization of TUPLE1/HIRA: A Gene Implicated in DiGeorge Syndrome. Mammalian Genome: Official Journal of the International Mammalian Genome Society, 7, 911-914.

[37]   Loppin, B., Bonnefoy, E., Anselme, C., Laurencon, A., Karr, T.L. and Couble, P. (2005) The Histone H3.3 Chaperone HIRA Is Essential for Chromatin Assembly in the Male Pronucleus. Nature, 437, 1386-1390.

[38]   Roberts, C., Sutherland, H.F., Farmer, H., Kimber, W., Halford, S., Carey, A., et al. (2002) Targeted Mutagenesis of the Hira Gene Results in Gastrulation Defects and Patterning Abnormalities of Mesoendodermal Derivatives Prior to Early Embryonic Lethality. Molecular and Cellular Biology, 22, 2318-2328.

[39]   Balaji, S., Iyer, L.M. and Aravind, L. (2009) HPC2 and Ubinuclein Define a Novel Family of Histone Chaperones Conserved Throughout Eukaryotes. Molecular BioSystems, 5, 269-275.

[40]   Aho, S., Lupo, J., Coly, P.A., Sabine, A., Castellazzi, M., Morand, P., et al. (2009) Characterization of the Ubinuclein Protein as a New Member of the Nuclear and Adhesion Complex Components (NACos). Biology of the Cell, 101, 319-334.

[41]   Gruffat, H., Lupo, J., Morand, P., Boyer, V. and Manet, E. (2011) The Nuclear and Adherent Junction Complex Component Protein Ubinuclein Negatively Regulates the Productive Cycle of Epstein-Barr Virus in Epithelial Cells. Journal of Virology, 85, 784-794.

[42]   Elsaesser, S.J. and Allis, C.D. (2010) HIRA and Daxx Constitute Two Independent Histone H3.3-Containing Predeposition Complexes. Cold Spring Harbor Symposia on Quantitative Biology, 75, 27-34.

[43]   Schwabish, M.A. and Struhl, K. (2006) Asf1 Mediates Histone Eviction and Deposition during Elongation by RNA Polymerase II. Molecular Cell, 22, 415-422.

[44]   Shandilya, J. and Roberts, S.G. (2012) The Transcription Cycle in Eukaryotes: From Productive Initiation to RNA Polymerase II Recycling. Biochimica et Biophysica Acta (BBA)—Gene Reg-ulatory Mechanisms, 1819, 391-400.

[45]   Orphanides, G., Lagrange, T. and Reinberg, D. (1996) The General Transcription Factors of RNA Polymerase II. Genes & Development, 10, 2657-2683.

[46]   Wada, T., Takagi, T., Yamaguchi, Y., Ferdous, A., Imai, T., Hirose, S., et al. (1998) DSIF, a Novel Transcription Elongation Factor That Regulates RNA Polymerase II Processivity, Is Composed of Human Spt4 and Spt5 Homologs. Genes & Development, 12, 343-356.

[47]   Yamaguchi, Y., Takagi, T., Wada, T., Yano, K., Furuya, A., Sugimoto, S., et al. (1999) NELF, a Multisubunit Complex Containing RD, Cooperates with DSIF to Repress RNA Polymerase II Elongation. Cell, 97, 41-51.

[48]   Corden, J.L. (1990) Tails of RNA Poly-merase II. Trends in Biochemical Sciences, 15, 383-387.

[49]   Ohkuma, Y. and Roeder, R.G. (1994) Regulation of TFIIH ATPase and Kinase Activities by TFIIE during Active Initiation Complex Formation. Nature, 368, 160-163.

[50]   Liu, X., Bushnell, D.A., Silva, D.A., Huang, X. and Kornberg, R.D. (2011) Initiation Complex Structure and Promoter Proofreading. Science, 333, 633-637.

[51]   Peterlin, B.M. and Price, D.H. (2006) Controlling the Elongation Phase of Transcription with P-TEFb. Molecular Cell, 23, 297-305.

[52]   Ivanov, D., Kwak, Y.T., Guo, J. and Gaynor, R.B. (2000) Domains in the SPT5 Protein That Modulate Its Transcriptional Regulatory Properties. Molecular and Cellular Biology, 20, 2970-2983.

[53]   Lis, J. (1998) Promoter-Associated Pausing in Promoter Architecture and Postinitiation Transcriptional Regulation. Cold Spring Harbor Symposia on Quantitative Biology, 63, 347-356.

[54]   Gilchrist, D.A., Fromm, G., dos Santos, G., Pham, L.N., McDaniel, I.E., Burkholder, A., et al. (2012) Regulating the Regulators: The Pervasive Effects of Pol II Pausing on Stimulus-Responsive Gene Networks. Genes & Development, 26, 933-944.

[55]   Muse, G.W., Gilchrist, D.A., Nechaev, S., Shah, R., Parker, J.S., Grissom, S.F., et al. (2007) RNA Polymerase Is Poised for Activation across the Genome. Nature Genetics, 39, 1507-1511.

[56]   Donahue, B.A., Yin, S., Taylor, J.S., Reines, D. and Hanawalt, P.C. (1994) Transcript Cleavage by RNA Polymerase II Arrested by a Cyclobutane Pyrimidine Dimer in the DNA Template. Proceedings of the National Academy of Sciences of the United States of America, 91, 8502-8506.

[57]   Tornaletti, S. and Hanawalt, P.C. (1999) Effect of DNA Lesions on Transcription Elongation. Biochimie, 81, 139-146.

[58]   Toulme, F., Guerin, M., Robichon, N., Leng, M. and Rahmouni, A.R. (1999) In Vivo Evidence for Back and Forth Oscillations of the Transcription Elongation Complex. The EMBO Journal, 18, 5052-5060.

[59]   Zenkin, N., Yuzenkova, Y. and Severinov, K. (2006) Tran-script-Assisted Transcriptional Proofreading. Science, 313, 518-520.

[60]   Nudler, E. (2012) RNA Polymerase Backtracking in Gene Regulation and Genome Instability. Cell, 149, 1438-1445.

[61]   Jeon, C. and Agarwal, K. (1996) Fidelity of RNA Polymerase II Transcription Controlled by Elongation Factor TFIIS. Proceedings of the National Academy of Sciences of the United States of America, 93, 13677-13682.

[62]   Larson, M.H., Zhou, J., Kaplan, C.D., Palangat, M., Kornberg, R.D., Landick, R., et al. (2012) Trigger Loop Dynamics Mediate the Balance between the Transcriptional Fidelity and Speed of RNA Polymerase II. Proceedings of the National Academy of Sciences of the United States of America, 109, 6555-6560.

[63]   Ratner, J.N., Balasubramanian, B., Corden, J., Warren, S.L. and Bregman, D.B. (1998) Ultraviolet Radiation-Induced Ubiquitination and Proteasomal Degradation of the Large Subunit of RNA Polymerase II. Implications for Transcription-Coupled DNA Repair. The Journal of Biological Chemistry, 273, 5184-5189.

[64]   Somesh, B.P., Reid, J., Liu, W.F., Sogaard, T.M., Erdju-ment-Bromage, H., Tempst, P., et al. (2005) Multiple Mechanisms Confining RNA Polymerase II Ubiquitylation to Poly-merases Undergoing Transcriptional Arrest. Cell, 121, 913- 923.

[65]   Hershko, A. and Ciechanover, A. (1998) The Ubiquitin System. Annual Review of Biochemistry, 67, 425-479.

[66]   Anindya, R., Aygun, O. and Svejstrup, J.Q. (2007) Damage-Induced Ubiquitylation of Human RNA Polymerase II by the Ubiquitin Ligase Nedd4, but Not Cockayne Syndrome Proteins or BRCA1. Molecular Cell, 28, 386-397.

[67]   Yasukawa, T., Kamura, T., Kitajima, S., Conaway, R.C., Conaway, J.W. and Aso, T. (2008) Mammalian Elongin A Complex Mediates DNA-Damage-Induced Ubiquitylation and Degradation of Rpb1. The EMBO Journal, 27, 3256-3266.

[68]   Harreman, M., Taschner, M., Sigurdsson, S., Anindya, R., Reid, J., Somesh, B., et al. (2009) Distinct Ubiquitin Ligases Act Sequentially for RNA Polymerase II Polyubiquitylation. Proceedings of the National Academy of Sciences of the United States of America, 106, 20705-20710.

[69]   Wilson, M.D., Harreman, M. and Svejstrup, J.Q. (2013) Ubiquitylation and Degradation of Elongating RNA Polymerase II: The Last Resort. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1829, 151-157.

[70]   Kwak, J., Workman, J.L. and Lee, D. (2011) The Proteasome and Its Regulatory Roles in Gene Expression. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1809, 88-96.

[71]   Bedford, L., Paine, S., Sheppard, P.W., Mayer, R.J. and Roelofs, J. (2010) Assembly, Structure, and Function of the 26S Proteasome. Trends in Cell Biology, 20, 391-401.

[72]   Glickman, M.H., Rubin, D.M., Coux, O., Wefes, I., Pfeifer, G., Cjeka, Z., et al. (1998) A Subcomplex of the Proteasome Regulatory Particle Required for Ubiquitin-Conjugate Degradation and Related to the COP9-Signalosome and eIF3. Cell, 94, 615-623.

[73]   Anderson, H.E., Kagansky, A., Wardle, J., Rappsilber, J., Allshire, R.C. and Whitehall, S.K. (2010) Silencing Mediated by the Schizosaccharomyces Pombe HIRA Complex Is Dependent upon the Hpc2-Like Protein, Hip4. PlOS ONE, 5, e13488.

[74]   Ray-Gallet, D., Woolfe, A., Vassias, I., Pellentz, C., Lacoste, N., Puri, A., et al. (2011) Dynamics of Histone H3 Deposition in Vivo Reveal a Nucleosome Gap-Filling Mechanism for H3.3 to Maintain Chromatin Integrity. Molecular Cell, 44, 928-941.

[75]   Chujo, M., Tarumoto, Y., Miyatake, K., Nishida, E. and Ishikawa, F. (2012) HIRA, a Conserved Histone Chaperone, Plays an Essential Role in Low-Dose Stress Response via Transcriptional Stimulation in Fission Yeast. The Journal of Biological Chemistry, 287, 23440-23450.

[76]   DeSilva, H., Lee, K. and Osley, M.A. (1998) Functional Dissection of Yeast Hir1p, a WD Repeat-Containing Transcriptional Corepressor. Genetics, 148, 657-667.

[77]   Andrulis, E.D., Guzman, E., Doring, P., Werner, J. and Lis, J.T. (2000) High-Resolution Localization of Drosophila Spt5 and Spt6 at Heat Shock Genes in Vivo: Roles in Promoter Proximal Pausing and Transcription Elongation. Genes & Development, 14, 2635-2649.

[78]   Formosa, T., Ruone, S., Adams, M.D., Olsen, A.E., Eriksson, P., Yu, Y., et al. (2002) Defects in SPT16 or POB3 (yFACT) in Saccharomyces cerevisiae Cause Dependence on the Hir/Hpc Pathway: Polymerase Passage May Degrade Chromatin Structure. Genetics, 162, 1557-1571.

[79]   Chimura, T., Kuzuhara, T. and Horikoshi, M. (2002) Identification and Characterization of CIA/ASF1 as an Interactor of Bromodomains Associated with TFIID. Proceedings of the National Academy of Sciences of the United States of America, 99, 9334-9339.

[80]   Bhat, K.P. and Greer, S.F. (2011) Proteolytic and Non-Proteolytic Roles of Ubiquitin and the Ubiquitin Proteasome System in Transcriptional Regulation. Biochimica et Biophysica Acta (BBA)—Gene Regulatory Mechanisms, 1809, 150-155.

[81]   Ishizuka, T., Satoh, T., Monden, T., Shibusawa, N., Hashida, T., Yamada, M., et al. (2001) Human Immunodeficiency Virus Type 1 Tat Binding Protein-1 Is a Transcriptional Coactivator Specific for TR. Molecular Endocrinology, 15, 1329-1343.

[82]   Satoh, T., Ishizuka, T., Tomaru, T., Yoshino, S., Nakajima, Y., Hashimoto, K., et al. (2009) Tat-Binding Protein-1 (TBP-1), an ATPase of 19S Regulatory Particles of the 26S Proteasome, Enhances Androgen Receptor Function in Cooperation with TBP-1-Interacting Protein/Hop2. Endocrinology, 150, 3283-3290.

[83]   Dianov, G.L., Houle, J.F., Iyer, N., Bohr, V.A. and Friedberg, E.C. (1997) Reduced RNA Polymerase II Transcription in Extracts of Cockayne Syndrome and Xeroderma Pigmentosum/Cockayne Syndrome Cells. Nucleic Acids Research, 25, 3636-3642.

[84]   Salinas-Rios, V., Belotserkovskii, B.P. and Hanawalt, P.C. (2011) DNA Slip-Outs Cause RNA Polymerase II Arrest in Vitro: Potential Implications for Genetic Instability. Nucleic Acids Research, 39, 7444-7454.

[85]   Lyu, Y.L., Kerrigan, J.E., Lin, C.P., Azarova, A.M., Tsai, Y.C., Ban, Y., et al. (2007) Topoisomerase IIβ Mediated DNA Double-Strand Breaks: Implications in Doxorubicin Cardiotoxicity and Prevention by Dexrazoxane. Cancer Research, 67, 8839-8846.

[86]   Zhang, S., Liu, X., Bawa-Khalfe, T., Lu, L.S., Lyu, Y.L., Liu, L.F., et al. (2012) Identification of the Molecular Basis of Doxorubicin-Induced Cardiotoxicity. Nature Medicine, 18, 1639-1642.