AJPS  Vol.6 No.3 , February 2015
Antimicrobial Activity of Fruit Latexes from Ten Laticiferous Plants
Abstract: In the present investigation antibacterial activity of latexes from ten Indian plant species Spondias dulcis (Amra), Diospyros melanoxylon (Tendu), Terminalia bellirica (Wahera), Ficus glomerata (Gular), Phyllanthus emblica (Awla), Thevetia nerifolia (Kaner), Carica papaya (Papita), Calotropis procera (Ak), Ficus benghalensis (Bargad), Atrocarpus heterophyllus (Kathal) collected from Go-rakhpur, North India were determined in various in vitro systems. MIC (minimum inhibitory concentration) and MBC (minimum bactericidal concentration) values were determined in growth inhibitory bioassays by using different increasing concentrations of various latex extracts. Latex samples were diluted by using serial micro dilution method up to 10-10 method with Luria broth culture medium. These values were obtained significantly 2 - 3 times lower than that of broad spectrum antibiotic drugs. Besides this, inhibition zone diameters were measured in agar disc diffusion assay. A known volume i.e. 0.1 - 20 μg/μl of each latex were coated on separate sterile filter paper discs (Whatman No. 1) measuring 6 mm in size. Latex fractions registered significantly higher growth inhibition than that of broad spectrum antimicrobial drugs. Present study indicates the potential use of shows that both latex and its components and latex as are valuable source of medicinal products/active principles that can be used for treatment of life threatening infectious diseases. Because of higher inhibitory and cidal potential obtained in latexes than the synthetic drugs these that could lead to become efficient phytomedicines mainly to have and develop as complete drug formulations against to control infectious microbes.
Cite this paper: Upadhyay, R. (2015) Antimicrobial Activity of Fruit Latexes from Ten Laticiferous Plants. American Journal of Plant Sciences, 6, 483-499. doi: 10.4236/ajps.2015.63053.

[1]   Pickard, W.F. (2008) Laticifers and Secretory Ducts: Two Other Tube Systems in Plants. New Phytologist, 177, 877-888.

[2]   Alamri, S.A. and Moustafa, M.F. Antibacterial Activity of the Latex of Argemone ochroleuca Sweet. Saudi Medicinal Journal, 31, 1207-1210.

[3]   Aref Lazreg, H., Gaaliche, B., Fekih, A., Mars, M., Aouni, M., Pierre Chaumon, J. and Said, K. (2011) In Vitro Cytotoxic and Antiviral Activities of Ficus carica Latex Extracts. Natural Product Research, 25, 310-319.

[4]   Avila, L., Perez, M., Sanchez-Duffhues, G., Hernández-Galán, R., Muaoz, E., Cabezas, F., Quinones, W., Torres, F. and Echeverri, F. (2010) Effects of Diterpenes from Latex of Euphorbia lactea and Euphorbia laurifolia on Human Immunodeficiency Virus Type 1 Reactivation. Phytochemistry, 71, 243-248.

[5]   Giordani, R., Cardinas, M.L., Moulin, T.J. and Regl, P. (1991) Antifungal Action of Carica papaya Latex Isolation of Fungal Cell Wall Hydrolyzing Enzymes. Mycoses, 34, 469-477.

[6]   Tanaka, H., Sato, M. and Fujiwara, S. (2002) Antibacterial Activity of Iso-Flavonoids Isolated from Erythrina variegata against Methicillin Resistant Staphylococcus aureus. Letters in Applied Microbiology, 35, 228-489.

[7]   Silva, T.F., Coelho, M.R., Vollú, R.E., de Vasconcelos Goulart, F.R., Alviano, D.S. and Alviano Csseldin, L. (2011) Bacterial Community Associated with the Trunk Latex of Hancornia speciosa Gomes (Apocynaceae) Grown in the Northeast of Brazil. Antonie Van Leeuwenhoek, 99, 523-532.

[8]   Jain, S.C., Sharma, R., Jain, R. and Sharma, R.A. (1996) Antimicrobial Activity of Calotropis procera. Fitoterapia, 67, 275-277.

[9]   Itokawa, H., Ichihara, Y., Watanabe, K. and Takeya, K. (1989) An Antitumor Principle from Euphorbia Lathyris. Planta Medica, 55, 271-272.

[10]   Thomas, R., Sah, N.K. and Sharma, P.B. (2008) Therapeutic Biology of Jatropha curcas: A Mini Review. Current Pharmaceutical Biotechnology, 9, 315-324.

[11]   Asamenew, G., Bisrat, D., Mazumder, A. and Asres, K. (2011) In Vitro Antimicrobial and Antioxidant Activities of Anthrone and Chromone from the Latex of Aloe harlana Reynolds. Phytotherapy Research, 25, 1756-1760.

[12]   Lazreg-Aref, H., Mars, M., Fekih, A., Aouni, M. and Said, K. (2012) Chemical Composition and Antibacterial Activity of a Hexane Extract of Tunisian Caprifig Latex from the Unripe Fruit of Ficus carica. Pharmaceutical Biology, 50, 407-412.

[13]   Unander, D.W., Webster, G.L. and Blumberg, B.S. (1995) Usage and Bioassays in Phyllanthus (Euphorbiaceae). IV. Clustering of Antiviral Uses and Other Effects. Journal of Ethnopharmacology, 45, 1-18.

[14]   Camacho, M.D.R., Phillipson, J.D., Croft, S.L., Kirby, G.C., Warhurst, D.C., Castaneda, P. and Mata, R. (2000) Antiprotozoal and Cytotoxic Activities of Carbocyclic Triterpenes and Biflavonoids from Celaenodendrum mexicanum. Planta Medica, 66, 463-468.

[15]   Frederich, M., Tits, M. and Angenot, L. (2008) Potential Antimalarial Activity of Indole Alkaloids. Transactions of the Royal Society of Tropical Medicine and Hygiene, 102, 11-19.

[16]   Sharma, J.D. and Sharma, P. (2000) In-Vitro Schizonticidal Screening of Calotropis procera. Fitoterapia, 71, 77-79.

[17]   Adzu, B. and Salawu, O.A. (2009) Screening Diospyros mespiliformis Extract for Antimalarial Potency. International. Journal. Biological Chemical Science, 3, 271-276.

[18]   de Mesquita, M.L., Grellier, P., Mambu, L., de Paula, J.E. and Espindola, L.S. (2007) In Vitro Antiplasmodial Activity of Brazilian Cerrado Plants Used as Traditional Remedies. Journal of Ethnopharmacology, 110, 165-170.

[19]   Espindola, L.S., Vasconcelos Júnior, J.R., de Mesquita, M.L., Marquié, P., de Paula, J.E., Mambu, L., et al. (2004) Trypanocidal Activity of a New Diterpene from Casearia sylvestris var. Lingua. Planta, 70, 1093-1095.

[20]   Weniger, B., Robledo, S., Arango, G.J., Deharo, E., Aragón, R., Muñoz, V., et al. (2001) Antiprotozoal Activities of Colombian Plants. Journal of Ethnopharmacology, 78, 193-200.

[21]   Soares, D.C., Andrade, A.L., Delorenzi, J.C., Silva, J.R., Freire-de-Lima, L., Falcão, C.A., Pinto, A.C., Rossi-Bergmann, B. and Saraiva, E.M. (2010) Leishmanicidal Activity of Himatanthus sucuuba Latex against Leishmania amazonensis. Parasitology International, 59, 173-177.

[22]   Afonso-Cardoso, S.R., Silva, C.V., Ferreira, M.S. and Souza, M.A. (2011) Effect of the Synadenium carinatum Latex Lectin (ScLL) on Leishmania (Leishmania) amazonensis Infection in Murine Macrophages. Experimental Parasitology, 128, 61-67.

[23]   Tradtrantip, L., Namkung, W. and Verkman, A.S. (2010) Crofelemer, an Antisecretory Antidiarrheal Proanthocyanidin Oligomer Extracted from Croton lechleri, Targets Two Distinct Intestinal Chloride Channels. Molecular Pharmacology, 77, 69-78.

[24]   Baranov, A.U. and Elmuradov, B.J. (2009) Extraction and Characterization of Latex and Natural Rubber-Bearing Plants. Journal of Agricultural and Food Chemistry, 58, 734-743.

[25]   McCay, S. and Mahlberg, P. (1973) Study of Antimicrobial Activity and Bacteriology of Latex and Asclepias syriaca L. Antimicrobial Agent and Chemotherapy, 3, 247-253.

[26]   Karaman, I., Sahin, F., Gullus, M., Ogutue, H., Sengul, M. and Adiguzel, A. (2003) Antimicrobial Activity of Aqueous and Methanol Extracts of Juniperus oxycedrum L. Journal of Ethnophamacology, 85, 231-235.

[27]   Bauer, A.W., Kirby, W.M., Sherris, J.C. and Turuk, M. (1966) Antibiotic Susceptibility Testing by a Standardized Single Disk Method. American Journal of Clinical Pathology, 45, 493-496.

[28]   Momtaz, S., Lall, N., Hussein, A., Ostad, S.N. and Abdollahi, M. (2010) Investigation of the Possible Biological Activities of a Poisonous South African Plant; Hyaenanche globosa (Euphorbiaceae). Pharmacognosy Magzine, 6, 34-41.

[29]   Bel Hadj Salah, K., Mahjoub, M.A., Chaumont, J.P., Michel, L., Millet-Clerc, J., Chraeif, I., Ammar, S., Mighri, Z. and Aouni, M. (2007) Chemical Composition and in Vitro Antifungal and Antioxidant Activity of the Essential Oil and Methanolic Extract of Teucrium sauvagei Le Houerou. Natural Product Research, 20, 1089-1097.

[30]   Larhsini, M., Bousad, M., Lazrek, H.B., Jana, M. and Amarouch, H. (1997) Evaluation of Antifungal and Molluscicidal Properties of Extracts of Calotropis procera. Fitoterapia, 68, 371-373.

[31]   Mahmoud, T.S., Marques, M.R., do ó Pessoa, C., Lotufo, L.V.C., Magalhães, H.I.F., de Moraes, M.O., de Lima, D.P. and Tininis, A.G. (2011) In Vitro Cytotoxic Activity of Brazilian Middle West Plant Extracts. Revista Brasileira de Farmacognosia Brazilian Journal of Pharmacognosy, 21, 456-464.

[32]   Lazreg-Aref, H., Mars, M., Fekih, A., Aouni, M. and Said, K. (2012) Chemical Composition and Antibacterial Activity of a Hexane Extract of Tunisian caprifig Latex from the Unripe Fruit of Ficus carica. Pharmaceutical Biology, 50, 407-412.

[33]   Amrita, A., Mall, H.V., Dixit, K. and Gupta, S. (1989) Fungitoxic Properties of Latex of Plants with Special Reference to That of Croton bonplandianum Boill. Pharmaceutical Biology, 27, 25-28.

[34]   Sequeira, B.J., Vital, M.J.S., Pohlit, A.M., Pararos, I.C. and Cauper, G.S.B. (2009) Antibacterial and Antifungal Activity of Extracts and Exudates of the Amazonian Medicinal Tree Himatanthus articulates (Vahl) Woodson (Common neme: sucuba). Memórias do Instituto Oswaldo Cruz, 104, 34-39.

[35]   Daruliza, K.M., Yang, K.L., Lam, K.L., Priscilla, J.T., Sunderasan, E. and Ong, M.T. (2011) Anti-Candida albicans Activity and Brine Shrimp Lethality Test of Hevea brasiliensis Latex B-Serum. European Review for Medical and Pharmacological Sciences, 15, 1163-1171.

[36]   Siritapetawee, J., Thammasirirak, S. and Samosornsuk, W. (2012) Antimicrobial Activity of a 48-kDa Protease (AMP48) from Artocarpus heterophyllus Latex. European Review for Medical and Pharmacological Sciences, 16, 132-137.

[37]   Taira, T., Ohdomari, A., Nakama, N., Shimoji, M. and Ishihara, M. (2005) Characterization and Antifungal Activity of Gazyumaru (Ficus microcarpa) Latex Chitinase: Both the Chitin-Binding and the Antifungal Activities of Class 1 Chitinase Are Reinforced with Increasing Ionic Strength. Bioscience Biotechnology Biochemistry, 69, 811-818.

[38]   Kumar, R., Singh, K.A., Tomar, R. and Jagannadham, M.V. (2011) Biochemical and Spectroscopic Characterization of a Novel Metalloprotease, Cotinifolin from an Antiviral Plant Shrub: Euphorbia cotinifolia. Plant Physioliology Biochemistry, 49, 721-728.

[39]   Kanokwiroon, K., Teanpaisan, R., Wititsuwannakul, D., Hooper, A.B. and Wititsuwannakul, R. (2008) Antimicrobial Activity of a Protein Purified from the Latex of Hevea brasiliensis on Oral Microorganisms. Mycoses, 51, 301-307.

[40]   Sanchez-Monge, R., Blanco, C., Díaz-Perales, A., Collada, C., Carrillo, T., Aragoncillo, C. and Salcedo, G. (1999) Isolation and Characterization of Major Banana Allergens: Identification as Fruit Class I Chitinases. Clinical Experimental Allergy, 29, 673-680.

[41]   de Freitas, C.D., Nogueira, F.C., Vasconcelos, I.M., Oliveira, J.T., Domont, G.B. and Ramos, M.V. (2011) Osmotin Purified from the Latex of Calotropis procera: Biochemical Characterization, Biological Activity and Role in Plant Defense. Plant Physiology Biochemistry, 49, 738-743.

[42]   Dubey, K. and Jagannadham, M.V. (2003) Procerain, a Stable Cysteine Protease from the Latex of Calotropis procera. Phytochemistry, 62, 1057-1071.

[43]   Lima-Filho, J.V., Patriota, J.M., Silva, A.F., Filho, N.T., Oliveira, R.S., Alencar, N.M. and Ramos, M.V. (2010) Proteins from Latex of Calotropis procera Prevent Septic Shock Due to Lethal Infection by Salmonella enterica Serovar Typhimurium. Journal of Ethnopharmacology, 129, 327-334.

[44]   Ibrahim, M.A., Aliyu, A.B., Meduteni, K. and Yunusa, I. (2013) Saponins-Rich Fraction of Calotropis procera Leaves Elicit No Antitrypanosomal Activity in a Rat Model. Asian Pacific Journal Tropical Biomedicine, 3, 569-572.

[45]   Wong, S.K., Lim, Y.Y., Abdullah, N.R. and Nordin, F.J. (2011) Assessment of Antiproliferative and Antiplasmodial Activities of Five Selected Apocynaceae Species. BMC Complement Alternative Medicine, 11, 3.

[46]   Mazoir, N., Benharref, A., Bailén, M., Reina, M., González-Coloma, A. and Martínez-Díaz, R.A. (2011) Antileishmanial and Antitrypanosomal Activity of Triterpene Derivatives from Latex of Two Euphorbia Species. Zeitschrift für Naturforschung C, 66, 360-366.

[47]   Hohmann, J. and Molnár, J. (2004) Euphorbiaceae Diterpenes: Plant Toxins or Promising Molecules for the Therapy? Acta Pharmaceutica Hungarica, 74, 149-157.

[48]   Inouye, S., Takizawa, T. and Yamaguchi, H. (2001) Antibacterial Activity of Essential Oils and Their Major Constituents against Respiratory Tract Pathogen by Gaseous Contact. Journal Antimicrobial. Chemotherapy, 47, 565-573.

[49]   Delaquis, P.J., Stewart, S., Cazaux, S. and Toivonen, P. (2002) Survival and Growth of Listeria monocytogenes and Escherichia coli O157: H7 in Ready-to-Eat Iceberg Lettuce Washed in Warm, Chlorinated Water. Journal Food Protection, 65, 459-464.

[50]   Lambert, R.J., Skandamis, P.N., Coote, P.J. and Nycas, G.J. (2001) A Study of the Minimum Inhibitory Concentration and Mode of Action of Oregano Essential Oil, Thymol and Carvacrol. Journal of Applied Microbiology, 91, 453-462.

[51]   Walsh, S.E., Maillard, J.Y., Russel, A.D., Catrenich, C.E., Charbonneau, D.L. and Bartolo, R.J. (2003) Activity and Mechanism of Action of Selected Biocidal Agents on Gram-Positive and -Negative Bacteria. Journal of Applied Microbiology, 94, 240-247.

[52]   Knobloch, K., Weigand, H., Weis, N., Schwar, H.M. and Vigenschow, H. (1986) Action of Terpenoids on Energy Metabolism. In: Gruyter, D., Ed., Progress in Essential Oil Research: 16th International Symposium on Essential Oils, Germany, Berlin, pp:429-445.

[53]   Olapeju, O.A., Amao, A.H., Ernesto, F., Taglialatela-Scafati, O., Heinz, C.S. and Müller, W.E.G. (2011) Cytotoxic Activity of Crude Extracts as well as of Pure Components from Jatropha Species, Plants Used Extensively in African Traditional Medicine. Evidence-Based Complementary and Alternative Medicine, 2011, 1-7.

[54]   Wong, S.K., Lim, Y.Y., Abdullah, N.R. and Nordin, F.J. (2011) Assessment of Antiproliferative and Antiplasmodial Activities of Five Selected Apocynaceae Species. BMC Complement Alternative Medicine, 11, 3.

[55]   Kumar, V.L. and Roy, S. (2007) Calotropis procera Latex Extract Affords Protection against Inflammation and Oxidative Stress in Freund’s Complete Adjuvant-Induced Monoarthritis in Rats. Mediators Inflammation, 2007, Article ID: 47523.

[56]   Rajesh, R., Raghavendra Gowda, C.D., Nataraju, A., Dhananjaya, B.L., Kemparaju, K. and Vishwanath, B.S. (2005) Procoagulant Activity of Calotropis gigantea Latex Associated with Fibrin(ogen)olytic Activity. Toxicon, 46, 84-92.

[57]   Nagaty, H.F., Rifatt, M.A. and Morsy, T.A. (1959) Trials of the Effect on Dog Ascaris in Vivo Produced by the Latex of Ficus carica and Papaya carica Growing in Cairo Gardens. Annals of Tropical Medicine and Parasitology, 53, 215-219.

[58]   Sabry, Y.M., Sanaa, M.F., Gad-Rab, N.H., Ahmad, A. and Shoreit, M. (2010) Antiviral Activity of Latex from Ficus nitida against Plant Viruses. Global Journal of Biotechnology & Biochemistry, 5, 198-205.

[59]   Mousinho, K.C., Oliveira, C.D., Ferreira, J.R., Carvalho, A.A., Magalhães, H.I., Bezerra, D.P., Alves, A.P., Costa-Lotufo, L.V., Pessoa, C., de Matos, M.P., Ramos, M.V. and Moraes, M.O. (2011) Antitumor Effect of Laticifer Proteins of Himatanthus drasticus (Mart.) Plumel-Apocynaceae. Journal of Ethnopharmacol, 137, 421-426.

[60]   Lee, J.H. and Stein, B.D. (2011) Antimicrobial Activity of a Combination of Mume fructus, Schizandrae fructus, and Coptidis rhizoma on Enterohemorrhagic Escherichia coli O26, O111, and O157 and Its Effect on Shiga Toxin Releases. Foodborne Pathogens and Disease, 8, 643-646.

[61]   Ahmad, I. and Beg, A.G. (2001) Antimicrobial and Phytochemical Activity on 45 Indian Medicinal Plant against Multidrug Resistant Human Pathogens. Journal of Ethnopharmacology, 74, 113-123.