AJPS  Vol.2 No.2 , June 2011
In Vitro Somatic Embryogenesis in Some Oil Yielding Tropical Tree Species
Abstract: Somatic embryogenesis was achieved in two oil yielding tropical tree species i.e. Simarouba glauca & Azadirachta indica using immature zygotic embryos as explants on Murashige and Skoog (MS) medium supplemented with 0.5 – 1.5 mg/l benzylaminopurine (BA) and 2.0 - 3.0 mg/l NAA (1-napthaleneacetic acid) or 2, 4-D (2,4-dichlorophenoxyacetic acid) and 3% sucrose. MS medium containing 1.0 mg/l BA and 2.0 mg/l NAA was noted to be the most effective in inducing friable embryogenic callus (FEC) in Simarouba glauca; the number of somatic embryos per culture varied in MS medium supplemented with 1.0 – 1.5 mg/l BA and 1.0 mg/l NAA. In Azadirachta indica, somatic embryos developed on MS medium supplemented with 0.5 mg/l BA and 1.5 – 2.0 mg/l 2,4-D which were in various shapes and sizes after the first subculture on MS medium supplemented with 0.25 mg/l abscisic acid. The somatic embryos which developed shoots were isolated and rooted in 1/2 strength MS medium supplemented with 0.25 mg/l abscisic acid and 2% sucrose. About 25% of embryos germinated within 20 days of culture in case of Simarouba glauca and 62% in Azadirachta indica. The somatic embryo-derived plantlets were transferred to the field after being hardened in the climate controlled hardening chamber.
Cite this paper: nullP. Das, "In Vitro Somatic Embryogenesis in Some Oil Yielding Tropical Tree Species," American Journal of Plant Sciences, Vol. 2 No. 2, 2011, pp. 217-222. doi: 10.4236/ajps.2011.22023.

[1]   Anonymous. The Wealth of India:A Dictionary of Indian Raw Material and industrial Products. Vol. 1, 1985, (pp. 37-47), Revised Edition.

[2]   P. V. Ammirato. The regulation of somatic embryo development in plant cell cultures: suspension culture techniques and hormone requirements. Bio/Technology, Vol. 1, 1983, pp. 68-74.

[3]   G. Maheswaran, and E. G. Williams. Direct secondary somatic embryogenesis from immature sexual embryos of Trifolium repens cultured in vitro. Ann. Bot., 57, 1986, pp. 109-117.

[4]   L. Bonneau, N. Beranger-Novat., and J. Monin. Somatic embryogenesis and plant regeneration in a woody species: the European Spindle Tree (Euonymus europaeus L.). Plant Cell Reports, Vol. 13, 1994, :135-138.

[5]   P. Das, S. Samantaray, A. V. Roberts, and G. R.Rout. In vitro somatic embryogenesis of Dalbergia sissoo Roxb. – a multipurpose timber yielding tree. Plant Cell Reports, Vol. 16, 1997, pp. 578-582.

[6]   W. W. Su, W. I. Hwang, S. Y. Kim, and Y. Sagawa. Induction of somatic embryogenesis in Azadirachta indica. Plant Cell, Tissue Organ Culture, Vol.50, 1997, pp. 91-95.

[7]   M. Toribio, C.Fernandez, C.Celestino, M.T.Martinez, M. C. San-Jose, and A.M.Vieitez. Somatic embryogenesis in mature Quercus robur trees. Plant Cell, Tissue Organ Culture, Vol.76, 2004, pp.283-287.

[8]   H. K. Moon, J. A. Kim, S. Y. Park, Y. W. Kim, and H. D. Kang. Somatic embryogenesis and plantlet formation from a rare and endangered tree species, Oplopanax elatas. Jour. Plant Biology, Vol. 49, No. 4, 2006, pp. 320-325.

[9]   M. Singh, and R. Chaturvedi. An efficient protocol for cyclic somatic embryogenesis in neem (Azadirachta indica A.Juss.). Int. Jour. Civil & Environmental Engineering, Vol. 1, 2009, :49-51.

[10]   P. Das. Mass cloning of rose and Mussaenda, popular garden plants via. somatic embryogenesis. Horticultural Science, Vol. 37, 2010, pp. 70-78.

[11]   P. Das. Somatic embryogenesis in four tree legumes. Biotechnology Research International, Vol. 1, 2011, pp. 1-8. Article ID 737636.

[12]   Q. Jiang, and P.M. Gresshoff. Shoot control of hypernodulation and aberrant root formation in the har-1 mutant of Lotus japonicus. Funct. Plant Biol., Vol. 29, 2002, pp. 1371-1376.

[13]   I. R. Searle, A. E. Men, T. S. Laniya, D. M. Buzas, I. Iturbe-Ormaetxe, B. J. Carroll., and P. M. Gresshoff. Long distance signaling in nodulation directed by a ClAVATA 1-like receptor kinase. Science, Vol. 299, 2003, pp. 109-112.

[14]   T. Murashige, and F. Skoog,, A revised medium for rapid growth and bioassay with tobacco tissue cultures. Physiol. Plant, Vol. 15, 1962, pp. 473-497.

[15]   T. P. Pasternak, E. Prinsen, F. Ayaydin, P. Miskolczi, G. Potter, and H.Asard . The role of auxin, pH and stress in the activation of embryogenic cell division in leaf protoplast derived cells of alfalfa. Plant Physiology, Vol.129, 2002, 1807-1819.

[16]   R. L.Mott, Tree. In: B. V. Conger (Ed.), Cloning Agricultural Plants via In Vitro Techniques. CRC Press, Boca Raton, 1981, pp. 217-256.

[17]   B. O. C. Ortiz, M. E. P.Reyes, and E. P. M. Balch. Somatic embryogenesis and plant regeneration in A. farnesiana and A.schaffneri. In Vitro Cell Dev.-Plant, Vol. 36, 2000, pp. 268-272.

[18]   C. Akula, A. Akula, and R. Drew. Somatic embryogenesis in clonal neem, A.indica A.Juss. and analysis for in vitro azadirachtin production. In Vitro Cell Dev. Biol.- Plant, Vol. 39, 2003, pp. 304-310.

[19]   B. N. S. Murthy, and P. K. Saxena, Somatic embryogenesis and plant regeneration of neem (A.indica A.Juss.). Plant Cell Reports, Vol. 17, 1998, pp. 469-475.

[20]   K. Shetty, and B. D. Mckersie. Proline, thioproline, and potassium mediated stimulation of somatic embryogenesis in alfalfa (Medicago sativa L.). Plant Science, Vol. 88, 1993, pp. 185-193.

[21]   S. K. Ghanti, K. G. Sujata, S. Rao, M. Udayakumar, and P. B. Kavi Kishore. Role of enzymes and identification of stage– specific proteins in developing somatic embryos of chickpea (Cicer arietinum L.). In Vitro Cell. Dev Biol., -Plant., Vol. 45, 2009, pp. 667-672.

[22]   L. Radojevic L. Plant regeneration of Aesculus hippocastanum L. (Horse chestnut) through somatic embryogenesis. Jour. Plant Physiol., Vol. 132, 1988, pp. 322-326.