Prediction and Derivation of the Hubble Constant from Subatomic Data Utilizing the Harmonic Neutron Hypothesis

Affiliation(s)

^{1}
Department of Radiology, The Ohio State University, Columbus, USA.

^{2}
Columbus State Community College, Columbus, USA.

ABSTRACT

Purpose: To accurately derive*H*_{0} from subatomic constants in abscence of any standard astronomy data. Methods:
Recent astronomical data have determined a value of Hubble’s constant to range
from 76.9^{+3.9}_{-3.4}^{+10.0}_{-}_{8.0} to 67.80 ± 0.77
(km/s)/Mpc. An innovative prediction of *H*_{0} is obtained from harmonic properties of the frequency equivalents of neutron, *n*^{0}, in conjunction with the
electron, e; the Bohr radius, *α*_{0};
and the Rydberg constant, *R*. These
represent integer natural unit sets. The neutron is converted from its
frequency equivalent to a dimensionless constant,, where “h” = Planck’s constant, and “s” is measured in seconds. The
fundamental frequency, *V*_{f}, is the first integer
series set . All other atomic data are scaled to *V*_{f} as elements in a large, but a countable point set. The present value of *H*_{0} is derived and Ω_{M} assumed to be 0. An
accurate derivation of *H*_{0} is made using a unified power law. The integer set of the first twelve integers *N*_{12} {1,2,…,11,12}, and their harmonic fractions exponents of *V*_{f} represent the first generation of
bosons and particles. Thepartial harmonic fraction, -3/4, is exponent of *V*_{f} which represents *H*_{0}.
The partial fraction 3/4
is associated
with a component of neutron beta decay kinetic energy. Results: *H*_{0} is predicted utilizing a previously published line
used to derive Planck time, *t*_{p}.
The power law line of the experimental *H*_{0} and *t*_{p} conforms to the
predicted line. Conclusions: *H*_{0} can be predicted from subatomic
data related to the neutron and hydrogen.

Purpose: To accurately derive

KEYWORDS

Hubble Constant, Neutron, Unification Model, Planck Time, Quantum Gravity, Neutron Beta Decay, Neutrino

Hubble Constant, Neutron, Unification Model, Planck Time, Quantum Gravity, Neutron Beta Decay, Neutrino

Cite this paper

Chakeres, D. and Vento, R. (2015) Prediction and Derivation of the Hubble Constant from Subatomic Data Utilizing the Harmonic Neutron Hypothesis.*Journal of Modern Physics*, **6**, 283-302. doi: 10.4236/jmp.2015.63033.

Chakeres, D. and Vento, R. (2015) Prediction and Derivation of the Hubble Constant from Subatomic Data Utilizing the Harmonic Neutron Hypothesis.

References

[1] Ade, P.A.R., Aghanim, N., Alves, M.I.R., et al. (2014) Astronomy & Astrophysics, 571, Article ID: A1.

[2] Bonamente, M., Joy, M.K., Laroque, S.J., Carlstrom, J.E., Reese, E.D. and Dawson, K.S. (2006) The Astrophysical Journal, 647, 25-54.

http://dx.doi.org/10.1086/505291

[3] Freedman, W.L. and Madore, B.F. (2010) Annual Review of Astronomy and Astrophysics, 48, 673-710.

http://dx.doi.org/10.1146/annurev-astro-082708-101829

[4] Bennett, C.L., Larson, D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., Smith, R.S., Hill, K.M., Gold, B., et al. (2013) The Astrophysical Journal Supplement Series, 208, 19.

[5] Freedman, W.L., Madore, B.F., Scowcroft, V., Burns, C., Monson, A., Persson, S.E., Seibert, M. and Rigby, J. (2012) The Astrophysical Journal, 758, 24.

[6] Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., et al. (2014) Astronomy & Astrophysics, 571, Article ID: A16.

[7] Chakeres, D.W. (2009) Particle Physics Insights, 2, 1-20.

[8] Chakeres, D.W. (2011) Particle Physics Insights, 4, 19-23.

http://dx.doi.org/10.4137/PPI.S7961

[9] Chakeres, D.W. (2011) Particle Physics Insights, 4, 25-31.

http://dx.doi.org/10.4137/PPI.S8241

[10] Chakeres, D.W. (2013) Particle Physics Insights, 6, 1-7.

http://dx.doi.org/10.4137/PPI.S12390

[11] Chakeres, D.W. (2011) Particle Physics Insights, 4, 33-38.

http://dx.doi.org/10.4137/PPI.S8269

[12] Chakeres, D.W. (2012) Bulletin of the American Physical Society, 57.

[13] Chakeres, D.W. (2006) The Imaginary Number Neutron Symphony. US Copyright, TXu1-295-777/2006-09-15.

[14] Chakeres, D.W. (2014) Journal of Modern Physics, 5, 1670-1683.

http://dx.doi.org/10.4236/jmp.2014.516167

[15] Lauterbur, P.C. (1973) Nature, 242, 190-191.

http://dx.doi.org/10.1038/242190a0

[16] Ljunggren, S. (1983) Journal of Magnetic Resonance, 54, 338-343.

http://dx.doi.org/10.1016/0022-2364(83)90060-4

[17] Cajori, F. (1909) A History of the Logarithmic Slide Rule and Allied Instruments. The Engineering News Publishing Company, New York.

[18] Ng, Y.J., Christiansen, W.A. and van Dam, H. (2003) The Astrophysical Journal, 591, L87-L89.

http://dx.doi.org/10.1086/377121

[19] Lykken, J. and Spiropulu, M. (2014) Scientific American, 310, 34-39.

http://dx.doi.org/10.1038/scientificamerican0514-34

[1] Ade, P.A.R., Aghanim, N., Alves, M.I.R., et al. (2014) Astronomy & Astrophysics, 571, Article ID: A1.

[2] Bonamente, M., Joy, M.K., Laroque, S.J., Carlstrom, J.E., Reese, E.D. and Dawson, K.S. (2006) The Astrophysical Journal, 647, 25-54.

http://dx.doi.org/10.1086/505291

[3] Freedman, W.L. and Madore, B.F. (2010) Annual Review of Astronomy and Astrophysics, 48, 673-710.

http://dx.doi.org/10.1146/annurev-astro-082708-101829

[4] Bennett, C.L., Larson, D., Weiland, J.L., Jarosik, N., Hinshaw, G., Odegard, N., Smith, R.S., Hill, K.M., Gold, B., et al. (2013) The Astrophysical Journal Supplement Series, 208, 19.

[5] Freedman, W.L., Madore, B.F., Scowcroft, V., Burns, C., Monson, A., Persson, S.E., Seibert, M. and Rigby, J. (2012) The Astrophysical Journal, 758, 24.

[6] Ade, P.A.R., Aghanim, N., Armitage-Caplan, C., Arnaud, M., Ashdown, M., Atrio-Barandela, F., et al. (2014) Astronomy & Astrophysics, 571, Article ID: A16.

[7] Chakeres, D.W. (2009) Particle Physics Insights, 2, 1-20.

[8] Chakeres, D.W. (2011) Particle Physics Insights, 4, 19-23.

http://dx.doi.org/10.4137/PPI.S7961

[9] Chakeres, D.W. (2011) Particle Physics Insights, 4, 25-31.

http://dx.doi.org/10.4137/PPI.S8241

[10] Chakeres, D.W. (2013) Particle Physics Insights, 6, 1-7.

http://dx.doi.org/10.4137/PPI.S12390

[11] Chakeres, D.W. (2011) Particle Physics Insights, 4, 33-38.

http://dx.doi.org/10.4137/PPI.S8269

[12] Chakeres, D.W. (2012) Bulletin of the American Physical Society, 57.

[13] Chakeres, D.W. (2006) The Imaginary Number Neutron Symphony. US Copyright, TXu1-295-777/2006-09-15.

[14] Chakeres, D.W. (2014) Journal of Modern Physics, 5, 1670-1683.

http://dx.doi.org/10.4236/jmp.2014.516167

[15] Lauterbur, P.C. (1973) Nature, 242, 190-191.

http://dx.doi.org/10.1038/242190a0

[16] Ljunggren, S. (1983) Journal of Magnetic Resonance, 54, 338-343.

http://dx.doi.org/10.1016/0022-2364(83)90060-4

[17] Cajori, F. (1909) A History of the Logarithmic Slide Rule and Allied Instruments. The Engineering News Publishing Company, New York.

[18] Ng, Y.J., Christiansen, W.A. and van Dam, H. (2003) The Astrophysical Journal, 591, L87-L89.

http://dx.doi.org/10.1086/377121

[19] Lykken, J. and Spiropulu, M. (2014) Scientific American, 310, 34-39.

http://dx.doi.org/10.1038/scientificamerican0514-34