[1] Poon, H.F.,Vaishnav, R.A., Getchell, T.V., Getchell, M.L. and Butterfield, D.A. (2006) Quantitative Proteomics Analysis of Differential Protein Expression and Oxidative Modification of Specific Proteins in the Brains of Old Mice. Neurobiology of Aging,27, 1010-1019.
http://dx.doi.org/10.1016/j.neurobiolaging.2005.05.006
[2] Leutner, S., Eckert, A. and Muller, W.E. (2001) ROS Generation,Lipid Peroxidation and Antioxidant Enzyme Activities in the Aging Brain. Journal of Neural Transmission,108, 955-967.
http://dx.doi.org/10.1007/s007020170015
[3] Biessels, G.J., van der Heide, L.P., Kamal, A.,Bleys, R.L. and Gispen, W.H. (2002) Ageing and Diabetes: Implications for Brain Function. European Journal of Pharmacology,441, 1-14.
http://dx.doi.org/10.1016/S0014-2999(02)01486-3
[4] Calabrese, V., Cornelius, C., Mancuso, C., Pennisi, G., Calafato, S., Bellia, F., Bates, T.E., Giuffrida Stella, A.M., Schapira, T., DinkovaKostova, A.T. and Rizzarelli, E. (2008) Cellular Stress Response: A Novel Target for Chemoprevention and Nutritional Neuroprotectionin Aging, Neurodegenerative Disorders and Longevity. Neurochemical Research, 33, 2444-2471.
http://dx.doi.org/10.1007/s11064-008-9775-9
[5] Barker, R. (1991) Substance P and Neurodegenerative Disorders. A Speculative Review. Neuropeptides,20, 73-78. http://dx.doi.org/10.1016/0143-4179(91)90054-M
[6] Lingrel, J.B.,Orlowski, J., Shull, M.M. and Price, E.M. (1990) Molecular Genetics of Na+- K+ ATPase. Progress in Nucleic Acid Research and Molecular Biology,38, 37-89.http://dx.doi.org/10.1016/S0079-6603(08)60708-4
[7] Shepherd, G.M. (1994) Neurobiology.3rd Edition, Oxford University Press, Oxford.
[8] Bertorello, A.M.,Aperia, A.,Walaas, S.I.,Nairn, A.C. and Greengard, P. (1991) Phosphorylation of the Catalytic Subunit of Na+- K+ ATPase Inhibits the Activity of the Enzyme. Proceedings of the National Academy of Sciences,88, 11359-11362.http://dx.doi.org/10.1073/pnas.88.24.11359
[9] Antonicek, H.,Persohn, E. and Schachner, M. (1987) Biochemical and Functional Characterization of a Novel Neuron-Glia Adhesion Molecule That Is Involved in Neuronal Migration. The Journal of Cell Biology, 104, 1587-1595. http://dx.doi.org/10.1083/jcb.104.6.1587
[10] Harada, K., Lin, H., Endo, Y.,Fujishiro, N., Sakamoto, Y. and Inoue, M. (2006) Subunit Composition and Role of Na+, K+-ATPase in Ventricular Myocytes. The Journal of Physiological Sciences, 56, 113-121. http://dx.doi.org/10.2170/physiolsci.RP001905
[11] Beal, M.F. (1995) Aging, Energy and Oxidative Stress in Neurodegenerative Diseases. Annals of Neurology, 38, 357- 366.http://dx.doi.org/10.1002/ana.410380304
[12] Fleuranceau-Morel, P., Barrier, L., Fauconneau, B., Piriou, A. and Huguet, F (1999) Origin of 4-Hydroxynonenal Incubation Induced Inhibition of Dopamine Transporter and Na+/K+ Adenosine Triphosphate in Rat Striatal Synaptosomes. Neuroscience Letters, 277, 91-94.
http://dx.doi.org/10.1016/S0304-3940(99)00652-7
[13] Lehotsky, J., Kaplan, P., Racay, P., Matejovicova, M., Drgova, A. and Mezesova, V. (1999) Membrane Ion Transport Systems during Oxidative Stress in Rodent Brain: Protective Effect of Stobadine and Other Antioxidants. Life Sciences, 65, 1951-1958. http://dx.doi.org/10.1016/S0024-3205(99)00454-3
[14] Tanaka, Y. and Ando, S. (1990) Synaptic Aging as Revealed by Changes in Membrane Potential and Decreased Activity of Na+, K+-ATPase. Brain Research, 506, 46-52.
http://dx.doi.org/10.1016/0006-8993(90)91197-O
[15] Viani, P., Cervato, G., Fiorilli, A. and Cestaro, B. (1991) Age Related Differences in SynaptosomalPeroxidative Damage and Membrane Properties. Journal of Neurochemistry, 56, 253-258. http://dx.doi.org/10.1111/j.1471-4159.1991.tb02589.x
[16] Jha, R., Mahdi, A.A., Pandey, S., Baquer, N.Z. and Cowsik, S.M. (2013) Effects of Tachykinin Neuropeptide NKB and Aβ(25-35) on Antioxidant Enzymes Status in 17βEstradiol Treated Aging Female Rats. Advances in Aging Research, 2, 137-143. http://dx.doi.org/10.4236/aar.2013.24020
[17] Jha, R., Mahdi, A.A., Pandey, S., Baquer, N.Z. and Cowsik, S.M. (2013) Neuroprotective role of 17β Estradiol with Tachykinin Neuropeptide NKB and Aβ (25-35) in Aging Female Rat Brain.Advances in Aging Research,2, 130-136. http://dx.doi.org/10.4236/aar.2013.24019
[18] Jha, R., Mahdi, A.A., Pandey, S., Baquer, N.Z. and Cowsik, S.M. (2014) Age-Related Changes in Membrane Fluidity and Fluorescence Intensity by Tachykinin Neuropeptide NKB and Aβ (25-35) with 17β Estradiol in Female Rat Brain. American Journal of Experimental and Clinical Research, 1, 25-30.
[19] Henderson, V.W. (2010) Action of Estrogens in the Aging Brain: Dementia and Cognitive Aging. BiochimicaetBiophysicaActa(BBA)—General Subjects,1800, 1077-1083.
http://dx.doi.org/10.1016/j.bbagen.2009.11.005
[20] Dobson, C.M. (2003) Protein Folding and Misfolding. Nature, 426, 884-890.
http://dx.doi.org/10.1038/nature02261
[21] Garcia-Segura, L.M., Azcoitia, I. and DonCarlos, L.L. (2001) Neuroprotection by Estradiol. Progress in Neurobiology, 63, 29-60. http://dx.doi.org/10.1016/S0301-0082(00)00025-3
[22] Simpkins, J.W., Singh, M. and Bishop, J. (1994) The Potential Role for Estrogen Replacement Therapy in the Treatment of Cognitive Decline and Neurodegeneration Associated with Alzheimer’s Disease. Neurobiology of Aging, 2, 195-197. http://dx.doi.org/10.1016/0197-4580(94)90205-4
[23] Behl, C. (1999) Alzheimer’s Disease and Oxidative Stress: Implications for Novel Therapeutic Approaches. Progress in Neurobiology, 57, 301-323.
http://dx.doi.org/10.1016/S0301-0082(98)00055-0
[24] Patacchini, R., Lecci, A., Holzer, P. and Maggi, C.A. (2004) Newly Discovered Tachykinins Raise New Questions about Their Peripheral Roles and the Tachykinin Nomenclature. Trends in Pharmacological Sciences, 25, 1-3. http://dx.doi.org/10.1016/j.tips.2003.11.005
[25] Almeida, T.A., Rojo, J., Nieto, P.M., Pinto, F.M., Hernandez, M., Martin, J.D. and Candenas, M.L. (2004) Tachykinins and Tachykinin Receptors: Structure and Activity Relationships. Current Medicinal Chemistry, 11, 2045-2081. http://dx.doi.org/10.2174/0929867043364748
[26] Turska, E., Lachowicz, L. and Wasiak, T. (1985) Effect of Analogues of Substance P Fragments on the MAO Activity in Rat Brain. General Pharmacology: The Vascular System, 16, 293-235.
http://dx.doi.org/10.1016/0306-3623(85)90088-6
[27] Mantha, A.K., Moorthy, K., Cowsik, S.M. and Baquer, N.Z. (2006) Neuroprotective Role of Neurokinin B (NKB) on Amyloid β (25-35) Induced Toxicity in Aging Rat Brain Synaptosomes: Involvement in Oxidative Stress and Excitotoxicity. Biogerentology, 7, 1-17.
http://dx.doi.org/10.1007/s10522-005-6043-0
[28] Mantha, A.K., Moorthy, K., Cowsik, S.M. and Baquer, N.Z. (2006) Membrane Associated Functions of Neurokinin B (NKB) on Aβ(25-35) Induced Toxicity in Aging Rat Brain Synaptosomes. Biogerentology, 7, 19-33. http://dx.doi.org/10.1007/s10522-005-6044-z
[29] Yankner, B.A., Duffy, L.K. and Kirschner, D.A. (1990) Neurotrophic and Neurotoxic Effects of Amyloid Beta Protein: Reversal by Tachykinin Neuropeptides.Science, 250, 279-282.
http://dx.doi.org/10.1126/science.2218531
[30] Kowall, N.W., Beal, M.F., Buscigliot, J., Duffyt, L.K. and Yankner, N.W. (1991) An in Vivo Model for the Neurodegenerative Effects of β Amyloid and Protection by Substance P. Neurobiology, 88, 7247-7251.
[31] Maggio, J.E. (1988) Tachykinins. Annual Review of Neuroscience, 11, 13-28.
http://dx.doi.org/10.1146/annurev.ne.11.030188.000305
[32] Pennefather, J.N., Lecci, A., Candenas, M.L., Patak, E., Pinto, F.M. and Maggi, C.A (2004) Tachykinins and Tachykinin Receptors: A Growing Family.Life Sciences, 74, 1445-1463.
http://dx.doi.org/10.1016/j.lfs.2003.09.039
[33] Moorthy, K., Yadav, U.C.S., Siddiqui, M.R., Basir, S.F., Sharma, D. and Baquer, N.Z. (2004) Effect of Estradiol and Progesterone Treatment on Carbohydrate Metabolizing Enzymes in Tissues of Aging Female Rats. Biogerontology, 5, 249-259. http://dx.doi.org/10.1023/B:BGEN.0000038026.89337.02
[34] Mayanil, C.S., Kazmi, S.M. and Baquer, N.Z. (1982) Na+, K+-ATPase and Mg2+-ATPase Activities in Different Regions of Rat Brain during Alloxan Diabetes. Journal of Neurochemistry, 39, 903-908.
http://dx.doi.org/10.1111/j.1471-4159.1982.tb11475.x
[35] Bradford, M.M. (1976) A Rapid and Sensitive Method for the Quantitation of Microgram Quantities of Protein Utilizing the Principle of Protein-Dye Binding. Analytical Biochemistry, 72, 248-254.
http://dx.doi.org/10.1016/0003-2697(76)90527-3
[36] Towbin, H. and Gordon, J. (1984) Immunoblotting and Dot Immunobinding Current Status and Outlook. Journal of Immunological Methods, 72, 313-340.
http://dx.doi.org/10.1016/0022-1759(84)90001-2
[37] Kaur, J., Sharma, D. and Singh, R. (1998) Regional Effects of Aging on Na+, K+-ATPase Activity in Rat Brain and Correlation with Multiple Unit Action Potentials and Lipid Peroxidation. Indian Journal of Biochemistry and Biophysics, 35, 364-371.
[38] Chakraborty, H., Sen, P., Sur, A., Chatterjee, U. and Chakrabarti, S. (2003) Age Related Oxidative Inactivation of Na+-K+-ATPase in Rat Brain Crude Synaptosomes. Experimental Gerontology, 38, 705-710. http://dx.doi.org/10.1016/S0531-5565(03)00066-4
[39] Tanaka, Y. and Ando, S. (1992) Age Related Changes in [3H] Ouabain Binding to Synaptic Plasma Membranes Isolated from Mouse Brains. Journal of Biochemistry, 112, 117-121.
[40] Gorini, A., Canosi, U., Devecch, I.E., Geroldi, D. and Villa, R.F. (2002) ATPases Enzyme Activities during Aging in Different Types of Somatic and Synaptic Plasma Membranes from Rat Frontal Cerebral Cortex. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 26, 81-90. http://dx.doi.org/10.1016/S0278-5846(01)00233-0
[41] Urayamatr, O., Shutt, H. and Sweadner, J.K. (1989) Identification of Three Isozyme Protein of the Catalytic Subunit of the Na,K-ATPase in Rat Brain. The Journal of Biological Chemistry, 264, 8271-8280.
[42] McGrail, K.M., Phillips, J.M. and Sweadner, K.J. (1991) LmmunofluorescentLocalization of Three Na, K-ATPaseIsozymes in the Rat Central Nervous System: Both Neurons and Glia Can Express More than One Na, K-ATPase. The Journal of Neuroscience, 11, 381-391.