APM  Vol.5 No.2 , February 2015
The Role of Asymptotic Mean in the Geometric Theory of Asymptotic Expansions in the Real Domain
Author(s) Antonio Granata*
ABSTRACT

We call “asymptotic mean” (at +∞) of a real-valued function the number, supposed to exist, , and highlight its role in the geometric theory of asymptotic expansions in the real domain of type (*) where the comparison functions , forming an asymptotic scale at +∞, belong to one of the three classes having a definite “type of variation” at +∞, slow, regular or rapid. For regularly varying comparison functions we can characterize the existence of an asymptotic expansion (*) by the nice property that a certain quantity F(t) has an asymptotic mean at +∞. This quantity is defined via a linear differential operator in f and admits of a remarkable geometric interpretation as it measures the ordinate of the point wherein that special curve , which has a contact of order n - 1 with the graph of f at the generic point t, intersects a fixed vertical line, say x = T. Sufficient or necessary conditions hold true for the other two classes. In this article we give results for two types of expansions already studied in our current development of a general theory of asymptotic expansions in the real domain, namely polynomial and two-term expansions.


Cite this paper
Granata, A. (2015) The Role of Asymptotic Mean in the Geometric Theory of Asymptotic Expansions in the Real Domain. Advances in Pure Mathematics, 5, 100-119. doi: 10.4236/apm.2015.52013.
References
[1]   Granata, A. (2007) Polynomial Asymptotic Expansions in the Real Domain: The Geometric, the Factorizational, and the Stabilization Approaches. Analysis Mathematica, 33, 161-198.
http://dx.doi.org/10.1007/s10476-007-0301-0

[2]   Granata, A. (2010) The Problem of Differentiating an Asymptotic Expansion in Real Powers. Part I: Unsatisfactory or Partial Results by Classical Approaches. Analysis Mathematica, 36, 85-112.
http://dx.doi.org/10.1007/s10476-010-0201-6

[3]   Granata, A. (2010) The Problem of Differentiating an Asymptotic Expansion in Real Powers. Part II: Factorizational Theory. Analysis Mathematica, 36, 173-218.
http://dx.doi.org/10.1007/s10476-010-0301-3

[4]   Granata, A. (2011) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part I: Two-Term Expansions of Differentiable Functions. Analysis Mathematica, 37, 245-287. (For an Enlarged Version with Corrected Misprints see: arxiv.org/abs/1405.6745v1 [mathCA].
http://dx.doi.org/10.1007/s10476-011-0402-7

[5]   Granata, A. (2014) Analytic Theory of Finite Asymptotic Expansions in the Real Domain. Part II: The Factorizational Theory for Chebyshev Asymptotic Scales. Electronically Archived—arXiv: 1406.4321v2 [math.CA].

[6]   Granata, A. (2015) The Factorizational Theory of Finite Asymptotic Expansions in the Real Domain: A Survey of the Main Results. Advances in Pure Mathematics, 5, 1-20.
http://dx.doi.org/10.4236/apm.2015.51001

[7]   Haupt, O. (1922) über Asymptoten ebener Kurven. Journal für die Reine und Angewandte Mathematik, 152, 6-10; ibidem, 239.

[8]   Sanders, J.A. and Verhulst, F. (1985) Averaging Methods in Nonlinear Dynamical Systems. Springer-Verlag, New York.

[9]   Corduneanu, C. (1968) Almost Periodic Functions. Interscience Publishers, New York.

[10]   Faedo, S. (1946) Il Teorema di Fuchs per le Equazioni Differenziali Lineari a Coefficienti non Analitici e Proprietà Asintotiche delle Soluzioni. Annali di Matematica Pura ed Applicata (the 4th Series), 25, 111-133.
http://dx.doi.org/10.1007/BF02418080

[11]   Hallam, T.G. (1967) Asymptotic Behavior of the Solutions of a Nonhomogeneous Singular Equation. Journal of Differential Equations, 3, 135-152.
http://dx.doi.org/10.1016/0022-0396(67)90011-3

[12]   Hukuhara, M. (1934) Sur les Points Singuliers des équations Différentielles Linéaires; Domaine Réel. Journal of the Faculty of Science, Hokkaido University, Ser. I, 2, 13-88.

[13]   Ostrowski, A.M. (1951) Note on an Infinite Integral. Duke Mathematical Journal, 18, 355-359.
http://dx.doi.org/10.1215/S0012-7094-51-01826-1

[14]   Agnew, R.P. (1942) Limits of Integrals. Duke Mathematical Journal, 9, 10-19.
http://dx.doi.org/10.1215/S0012-7094-42-00902-5

[15]   Hardy, G.H. (1911) Fourier’s Double Integral and the Theory of Divergent Integrals. Transactions of the Cambridge Philosophical Society, 21, 427-451.

[16]   Hardy, G.H. (1949) Divergent Series. Oxford University Press, Oxford. (Reprinted in 1973)

[17]   Blinov, I.N. (1983) Absence of Exact Mean Values for Certain Bounded Functions. Izvestija Akademii Nauk SSSR. Serija Mathematicheskaja (Moscow), 47, 1162-1181.

[18]   Ditkine, V. and Proudnikov, A. (1979) Calcul Opérationnel. éditions Mir, Moscou.

[19]   Baumgartel, H. and Wollenberg, M. (1983) Mathematical Scattering Theory. Birkhauser Verlag, Berlin.

[20]   Ostrowski, A.M. (1976) On Cauchy-Frullani Integrals. Commentarii Mathematici Helvetici, 51, 57-91.
http://dx.doi.org/10.1007/BF02568143

[21]   Bingham, N.H., Goldie, C.M. and Teugels, J.L. (1987) Regular Variation. Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511721434

[22]   Hartman, Ph. (1952) On Non-Oscillatory Linear Differential Equations of Second Order. American Journal of Mathematics, 74, 389-400. http://dx.doi.org/10.2307/2372004

[23]   Hartman, Ph. (1982) Ordinary Differential Equations. 2nd Edition, Birkhauser, Boston.

[24]   Giblin, P.J. (1972) What Is an Asymptote? The Mathematical Gazette, 56, 274-284.
http://dx.doi.org/10.2307/3617830

 
 
Top