Back
 OJPP  Vol.5 No.1 , February 2015
From Kantian-Reinen Vernunft to the Real Dark Energy Density of the Cosmos via the Measure Concentration of Convex Geometry in Quasi Banach Spacetime
Abstract: The paper argues strongly in favour of the opinion that Kantian pure reason could be implemented via pure mathematics to reveal a true deep aspect of the fundamental monads of the real physics of the cosmos. Thus using a remarkable pure mathematical-geometrical result stating that under certain conditions a manifold will have 96 percent of its volume concentrated near to its surface, we conclude that the 96 percent dark energy causing the edge of our universe to expand is a direct consequence of this pure geometrical result. From this viewpoint we could generalize our finding to mean that scientific philosophy is not only an important ingredient of human cultural existence but a real immensely important tool in analyzing the reality of the cosmos at the quantum level as well as its large scale structure.
Cite this paper: Naschie, M. (2015) From Kantian-Reinen Vernunft to the Real Dark Energy Density of the Cosmos via the Measure Concentration of Convex Geometry in Quasi Banach Spacetime. Open Journal of Philosophy, 5, 123-130. doi: 10.4236/ojpp.2015.51014.
References

[1]   Auffray, J.-P. (2014). E-Infinity Dualities, Discontinuous Spacetimes, Xonic Quantum Physics and the Decisive Experiment. Journal of Modern Physics, 5, 1427-1436.
http://dx.doi.org/10.4236/jmp.2014.515144

[2]   Ayer, A. J. (Ed.) (1954). Logical Positivism. Westport: Greenwood Press.
http://dx.doi.org/10.1112/jlms/s2-44.2.351

[3]   Ball, K. M. (1991). Volume Ratios and a Reverse Isoperimetric Inequality. Journal of London Mathematical Society, 44, 351-359.

[4]   Baumgartner, H. M. (1988). Kants Kritik der Reinen Vernunft. Man and World, 21, 241-259.
http://dx.doi.org/10.1007/BF01252320

[5]   Connes, A. (1994). Noncommutative Geometry. San Diego: Academic Press.

[6]   El Naschie, M. S. (1997). Introduction to Nonlinear Dynamics, General Relativity and the Quantum—The Uneven Flow of Fractal Time. Chaos, Solitons & Fractals, 8, vii-x.
http://dx.doi.org/10.1016/S0960-0779(97)88695-X

[7]   El Naschie, M. S. (1999). Hyper-Dimensional Geometry and the Nature of Physical Spacetime. Chaos, Solitons & Fractals, 10, 155-158.
http://dx.doi.org/10.1016/S0960-0779(98)00235-5

[8]   El Naschie, M. S. (2004). A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236.
http://dx.doi.org/10.1016/S0960-0779(03)00278-9

[9]   El Naschie, M. S. (2009). The Theory of Cantorian Spacetime and High Energy Particle Physics (An Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646.
http://dx.doi.org/10.1016/j.chaos.2008.09.059

[10]   El Naschie, M. S. (2011). Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1, 50-53.
http://dx.doi.org/10.4236/jqis.2011.12007

[11]   El Naschie, M. S. (2012a). The Minus One Connection of Relativity, Quantum Mechanics and Set Theory. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 2, 131-134.

[12]   El Naschie, M. S. (2012b). Revising Einstein’s E = mc2; A Theoretical Resolution of the Mystery of Dark Energy. Proceedings of the Fourth Arab International Conference in Physics and Material Science, Alexandria, 1-3 October 2012.

[13]   El Naschie, M. S. (2012c). Towards a General Transfinite Set Theory for Quantum Mechanics. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 2, 135-142.

[14]   El Naschie, M. S. (2013a). A Resolution of Cosmic Dark Energy via a Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3, 23-26.
http://dx.doi.org/10.4236/jqis.2013.31006

[15]   El Naschie, M. S. (2013b). A Rindler-KAM Spacetime Geometry and Scaling the Planck Scale Solves Quantum Relativity and Explains Dark Energy. International Journal of Astronomy and Astrophysics, 3, 483-493.
http://dx.doi.org/10.4236/ijaa.2013.34056

[16]   El Naschie, M. S. (2013c). A Unified Newtonian-Relativistic Quantum Resolution of the Supposedly Missing Dark Energy of the Cosmos and the Constancy of the Speed of Light. International Journal of Modern Nonlinear Theory and Application, 2, 43-54.
http://dx.doi.org/10.4236/ijmnta.2013.21005

[17]   El Naschie, M. S. (2013d). Determining the Missing Dark Energy Density of the Cosmos from a Light Cone Exact Relativistic Analysis. Journal of Physics, 2, 19-25.

[18]   El Naschie, M. S. (2013e). Experimentally Based Theoretical Arguments that Unruh’s Temperature, Hawking’s Vacuum Fluctuation and Rindler’s Wedge Are Physically Real. American Journal of Modern Physics, 2, 357-361.
http://dx.doi.org/10.11648/j.ajmp.20130206.23

[19]   El Naschie, M. S. (2013f). From Yang-Mills Photon in Curved Spacetime to Dark Energy Density. Journal of Quantum Information Science, 3, 121-126.
http://dx.doi.org/10.4236/jqis.2013.34016

[20]   El Naschie, M. S. (2013g). The Hyperbolic Extension of Sigalotti-Hendi-Sharifzadeh’s Golden Triangle of Special Theory of Relativity and the Nature of Dark Energy. Journal of Modern Physics, 4, 354-356.
http://dx.doi.org/10.4236/jmp.2013.43049

[21]   El Naschie, M. S. (2013h). The Quantum Entanglement behind the Missing Dark Energy. Journal of Modern Physics and Applications, 2, 88-96.

[22]   El Naschie, M. S. (2013i). The Quantum Gravity Immirzi Parameter—A General Physical and Topological Interpretation. Gravitation and Cosmology, 19, 151-155.
http://dx.doi.org/10.1134/S0202289313030031

[23]   El Naschie, M. S. (2013j). Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave. Journal of Modern Physics, 4, 591-596.
http://dx.doi.org/10.4236/jmp.2013.45084

[24]   El Naschie, M. S. (2013k). What Is the Missing Dark Energy in a Nutshell and the Hawking-Hartle Quantum Wave Collapse. International Journal of Astronomy and Astrophysics, 3, 205-211.
http://dx.doi.org/10.4236/ijaa.2013.33024

[25]   El Naschie, M. S. (2014a). Calculating the Exact Experimental Density of the Dark Energy in the Cosmos Assuming a Fractal Speed of Light. International Journal of Modern Nonlinear Theory and Application, 3, 1-5.
http://dx.doi.org/10.4236/ijmnta.2014.31001

[26]   El Naschie, M. S. (2014b). Cosmic Dark Energy from ‘t Hooft’s Dimensional Regularization and Witten’s Topological Quantum Field Pure Gravity. Journal of Quantum Information Science, 4, 83-91.
http://dx.doi.org/10.4236/jqis.2014.42008

[27]   El Naschie, M. S. (2014c). Cosserat-Cartan Modification of Einstein-Riemann Relativity and Cosmic Dark Energy Density. American Journal of Modern Physics, 3, 82-87.
http://dx.doi.org/10.11648/j.ajmp.20140302.17

[28]   El Naschie, M. S. (2014d). Dark Energy and Its Cosmic Density from Einstein’s Relativity and Gauge Fields Renormalization Leading to the Possibility of a New ‘t Hooft Quasi Particle. The Open Journal of Astronomy, in press.

[29]   El Naschie, M. S. (2014e). Dark Energy via Quantum Field Theory in Curved Spacetime. Journal of Modern Physics and Applications, 2, 1-7.

[30]   El Naschie, M. S. (2014f). Deriving E = mc2/22 of Einstein’s Ordinary Quantum Relativity Energy Density from the Lie Symmetry Group SO(10) of Grand Unification of All Fundamental Forces and without Quantum Mechanics. American Journal of Mechanics and Applications, 2, 6-9.

[31]   El Naschie, M. S. (2014g). From Modified Newtonian Gravity to Dark Energy via Quantum Entanglement. Journal of Applied Mathematics and Physics, 2, 803-806.

[32]   El Naschie, M. S. (2014h). Hardy’s Entanglement as the Ultimate Explanation for the Observed Cosmic Dark Energy and Accelerated Expansion. International Journal of High Energy Physics, 1, 13-17.

[33]   El Naschie, M. S. (2014i). Logarithmic Running of ‘t Hooft-Polyakov Monopole to Dark Energy. International Journal of High Energy Physics, 1, 1-5.

[34]   El Naschie, M. S. (2014j). Pinched Material Einstein Space-Time Produces Accelerated Cosmic Expansion. International Journal of Astronomy and Astrophysics, 4, 80-90.
http://dx.doi.org/10.4236/ijaa.2014.41009

[35]   El Naschie, M. S. (2014k). Rindler Space Derivation of Dark Energy. Journal of Modern Physics and Applications, 6, 1-10.

[36]   El Naschie, M. S. (2014l). The Meta Energy of Dark Energy. Open Journal of Philosophy, 4, 157-159.
http://dx.doi.org/10.4236/ojpp.2014.42022

[37]   El Naschie, M. S. (2014m). Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750.
http://dx.doi.org/10.4236/jmp.2014.59084

[38]   El Naschie, M. S., & Helal, A. (2013). Dark Energy Explained via the Hawking-Hartle Quantum Wave and the Topology of Cosmic Crystallography. International Journal of Astronomy and Astrophysics, 3, 318-343.
http://dx.doi.org/10.4236/ijaa.2013.33037

[39]   El Naschie, M. S., & Marek-Crnjac, L. (2012). Deriving the Exact Percentage of Dark Energy Using a Transfinite Version of Nottale’s Scale Relativity. International Journal of Modern Nonlinear Theory and Application, 1, 118-124.
http://dx.doi.org/10.4236/ijmnta.2012.14018

[40]   El Naschie, M. S., He, J. H., Marek-Crnjac, L., & Helal, A. (2014). A Topological Magueijo-Smolin Varying Speed of Light Theory, the Accelerated Cosmic Expansion and the Dark Energy of Pure Gravity. Applied Mathematics, 5, 1780-1790.
http://dx.doi.org/10.4236/am.2014.512171

[41]   El Naschie, M. S., He, J. H., Nada, S., Marek-Crnjac, L., & Helal, M. A. (2012a). Golden Mean Computer for High Energy Physics. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 2, 80-92.

[42]   El Naschie, M. S., Olsen, S., He, J. H., Nada, S., Marek-Crnjac, L., & Helal, A. (2012b). On the Need for Fractal Logic in High Energy Quantum Physics. International Journal of Modern Nonlinear Theory and Application, 1, 84-92.
http://dx.doi.org/10.4236/ijmnta.2012.13012

[43]   El Naschie, M. S. (1994) On Certain Empty Cantor Sets and Their Dimensions. Chaos, Solitons & Fractals, 4, 293-296.
http://dx.doi.org/10.1016/0960-0779(94)90152-X

[44]   Guedon, O. (2013). Concentration Phenomena in High Dimensional Geometry. arXiv:1310.1204.

[45]   He, J. H. (2014). A Tutorial Review on Fractal Spacetime and Fractional Calculus. International Journal of Theoretical Physics, 53, 3698-3718.
http://dx.doi.org/10.1007/s10773-014-2123-8

[46]   He, J. H. (Guest Editor) (2013). Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics.. Special Issue on Recent Developments on Dark Energy and Dark Matter, 1-62.

[47]   He, J. H., & El Naschie, M. S. (2012). On the Monadic Nature of Quantum Gravity as a Highly Structured Golden Ring, Spaces and Spectra. Fractal Spacetime and Noncommutative Geometry in Quantum and High Energy Physics, 2, 94-98.

[48]   He, J. H., & Marek-Crnjac, L. (2013). Mohamed El Naschie’s Revision of Albert Einstein’s E = mc2: A Definite Resolution of the Mystery of the Missing Dark Energy of the Cosmos. International Journal of Modern Nonlinear Theory and Application, 2, 55-59.
http://dx.doi.org/10.4236/ijmnta.2013.21006

[49]   Helal, M. A., Marek-Crnjac, L., & He, J. H. (2013). The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.

[50]   Kant, I. (1974). Kritik der reinen Vernunft. 2 Volum, Frankfurt/M.61982.

[51]   Kasin, B. S. (1977). The Width of Certain Finite-Dimensional Sets and Classes of Smooth Functions. IZV. Akad. Nauk. SSSR. Ser. Mat., 41, 334-351. (In Russian)

[52]   Krantz, S. G., & Parks, H. R. (2008). Geometric Integration Theory. Boston, MA: Birkhauser.
http://dx.doi.org/10.1007/978-0-8176-4679-0

[53]   Marek-Crnjac, L. (2013). Modification of Einstein’s E = mc2 to E = (1/22)mc2. American Journal of Modern Physics, 2, 255-263.
http://dx.doi.org/10.11648/j.ajmp.20130205.14

[54]   Marek-Crnjac, L., & El Naschie, M. S. (2013). Quantum Gravity and Dark Energy Using Fractal Planck Scaling. Journal of Modern Physics, 4, 31-38.
http://dx.doi.org/10.4236/jmp.2013.411A1005

[55]   Marek-Crnjac, L., & He, J. H. (2013). An Invitation to El Naschie’s Theory of Cantorian Space-Time and Dark Energy. International Journal of Astronomy and Astrophysics, 3, 464-471.
http://dx.doi.org/10.4236/ijaa.2013.34053

[56]   Marek-Crnjac, L., El Naschie, M. S., & He, J. H. (2013). Chaotic Fractals at the Root of Relativistic Quantum Physics and Cosmology. International Journal of Modern Nonlinear Theory and Application, 2, 78-88.
http://dx.doi.org/10.4236/ijmnta.2013.21A010

[57]   Okun, L. B. (2009). Energy and Mass in Relativity Theory. Singapore City: World Scientific.

[58]   Pisier, G. (1989). The Volume of Convex Bodies and Banach Space Geometry. Tracts in Math 94, Cambridge: Cambridge University Press.
http://dx.doi.org/10.1017/CBO9780511662454

[59]   Reichenbach, H. (1951). The Rise of Scientific Philosophy. Oakland, CA: University of California Press.

[60]   Rindler, W. (2004). Relativity (Special, General and Cosmological). Oxford: Oxford University Press.

[61]   Sartre, J. P. (2004). Critique of Dialectic Reason. London/New York: Verso.

[62]   Sartre, J. P. (2012). Being and Nothingness. New York: Open Road Media.

[63]   Tang, W., Li, Y., Kong, H. Y., & El Naschie, M. S. (2014). From Nonlocal Elasticity to Nonlocal Spacetime and Nano Science. Bubbfil Nanotechnology, 1, 3-12.

 
 
Top