Back
 EPE  Vol.7 No.2 , February 2015
Time-Temperature Charge Function of a High Dynamic Thermal Heat Storage with Phase Change Material
Abstract: A thermal heat storage system with an energy content of 40 kWh and a temperature of 58°C will be presented. This storage system is suitable for supporting the use of renewable energies in buildings and for absorbing solar heat, heat from co-generation and heat pumps or electric heat from excess wind and solar power. The storage system is equipped with a plate heat exchanger that is so powerful that even with small temperature differences between the flow temperature and the storage temperature a high load dynamic is achieved. The storage system has a performance of 2.8 kW at 4 K and 10.6 kW at a temperature difference of 10 K. Thus, large performance variations in solar thermal systems or CHP plants can be buffered very well. Further a storage charge function Q(T, t) will be presented to characterize the performance of the storage.
Cite this paper: Goeke, J. and Henne, A. (2015) Time-Temperature Charge Function of a High Dynamic Thermal Heat Storage with Phase Change Material. Energy and Power Engineering, 7, 41-54. doi: 10.4236/epe.2015.72004.
References

[1]   Telkes, M. and Raymond, E. (1949) Storing Solar Heat in Chemicals—A Report on the Dover House. Heat Vent, 46, 80-86.

[2]   Zalba, B., Marin, J., Cabeza, L.F. and Mehling, H. (2003) Review on Thermal Energy Storage with Phase Change: Materials, Heat Transfer Analysis and Applications. Applied Thermal Engineering, 23, 251-283.
http://dx.doi.org/10.1016/S1359-4311(02)00192-8

[3]   Oró, E., de Gracia, A., Castell, A., Farid, M.M. and Cabeza, L.F. (2012) Review on Phase Change Materials (PCMs) for Cold Thermal Energy Storage Applications. Applied Energy, 99, 513-533.
http://dx.doi.org/10.1016/j.apenergy.2012.03.058

[4]   Agyenim, F., Hewitt, N., Eames, P. and Smyth, M. (2010) A Review of Materials, Heat Transfer and Phase Change Problem Formulation for Latent Heat Thermal Energy Storage Systems (LHTESS). Renewable and Sustainable Energy Reviews, 14, 615-628.
http://dx.doi.org/10.1016/j.rser.2009.10.015

[5]   Pomianowskia, M., Heiselberg, P. and Zhang, Y. (2013) Review of Thermal Energy Storage Technologies Based on PCM Application in Buildings. Energy and Buildings, 67, 56-69.
http://dx.doi.org/10.1016/j.enbuild.2013.08.006

[6]   Soares, N., Costab, J.J., Gasparb, A.R. and Santosc, P. (2013) Review of Passive PCM Latent Heat Thermal Energy Storage Systems towards Buildings’ Energy Efficiency. Energy and Buildings, 59, 82-103.
http://dx.doi.org/10.1016/j.enbuild.2012.12.042

[7]   Liu, M., Saman, W. and Bruno, F. (2012) Review on Storage Materials and Thermal Performance Enhancement Techniques for High Temperature Phase Change Thermal Storage Systems. Renewable and Sustainable Energy Reviews, 16, 2118-2132.
http://dx.doi.org/10.1016/j.rser.2012.01.020

[8]   Mehling, H. and Cabeza, L.F. (2008) Heat and Cold Storage with PCM: An Up to Date Introduction into Basics and Applications. Springer, Berlin.

[9]   Rathod, M.K. and Banerjee, J. (2013) Thermal Stability of Phase Change Materials Used in Latent Heat Energy Storage Systems. Energy and Buildings, 67, 56-69.

[10]   Tan, F.L., Hosseinizadeh, S.F., Khodadadi, J.M. and Fan, L. (2009) Experimental and Computational Study of Constrained Melting of Phase Change Materials inside a Spherical Capsule. International Journal of Heat and Mass Transfer, 52, 3464-3472.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2009.02.043

[11]   Lafdi, K., Mesalhy, O. and Elgafy, A. (2008) Graphite Foams Infiltrated with Phase Change Materials, as Alternative Materials for Space and Terrestrial Thermal Energy Storage Applications. Carbon, 46, 159-168.
http://dx.doi.org/10.1016/j.carbon.2007.11.003

[12]   Tay, N.H.S., Belusko, M., Castell, A., Cabeza, L.F. and Bruno, F. (2014) An Effectiveness-NTU Technique for Characterising a Finned Tubes PCM System Using a CFD Model. Applied Energy, 131, 377-385.
http://dx.doi.org/10.1016/j.apenergy.2014.06.041

[13]   Sciacovelli, A., Gagliardi, F. and Verda, V. (2015) Maximization of Performance of a PCM Latent Heat Storage System, with Innovative Fins. Applied Energy, 137, 707-715.

[14]   Khalifa, A., Tan, L., Date, A. and Akbarzadeh, A. (2014) A Numerical and Experimental Study of Solidification around Axially Finned Heat Pipes for High Temperature Latent Heat Thermal Energy Storage Units. Applied Thermal Engineering, 70, 609-619.
http://dx.doi.org/10.1016/j.applthermaleng.2014.05.080

[15]   Agyenim, F., Eames, P. and Smyth, M. (2010) Heat Transfer Enhancement in Medium Temperature Thermal Energy Storage System Using a Multitube Heat Transfer Array. Renewable Energy, 35, 198-207.
http://dx.doi.org/10.1016/j.renene.2009.03.010

[16]   Agyenim, F. and Hewitt, N. (2010) The Development of a Finned Phase Change Material (PCM) Storage System to Take Advantage of Off-Peak Electricity Tariff for Improvement in Cost of Heat Pump Operation. Energy and Buildings, 42, 1552-1560.
http://dx.doi.org/10.1016/j.enbuild.2010.03.027

[17]   Agyenim, F., Eames, P. and Smyth, M. (2009) A Comparison of Heat Transfer Enhancement in a Medium Temperature Thermal Energy Storage Heat Exchanger Using Fins. Solar Energy, 83, 1509-1520.
http://dx.doi.org/10.1016/j.solener.2009.04.007

[18]   Kayansayan, N. and Acar, M.A. (2006) Ice Formation around a Finned-Tube Heat Exchanger for Cold Thermal Energy Storage. International Journal of Thermal Sciences, 45, 405-418.
http://dx.doi.org/10.1016/j.ijthermalsci.2005.05.009

[19]   Kurnia, J.C., Sasmito, A.P., Jangam, S.V. and Mujumdar, A.S. (2013) Improved Design for Heat Transfer Performance of a Novel Phase Change Material (PCM) Thermal Energy Storage (TES). Applied Thermal Engineering, 50, 896-907.
http://dx.doi.org/10.1016/j.applthermaleng.2012.08.015

[20]   Ismail, K.A.R. and Lino, F.A.M. (2011) Fins and Turbulence Promoters for Heat Transfer Enhancement in Latent Heat Storage Systems. Experimental Thermal and Fluid Science, 35, 1010-1018.
http://dx.doi.org/10.1016/j.expthermflusci.2011.02.002

[21]   Ismail, K.A.R., Lino, F.A.M., da Silva, R.C.R., de Jesus, A.B. and Paixao, L.C. (2014) Experimentally Validated Two Dimensional Numerical Model for the Solidification of PCM along a Horizontal Long Tube. International Journal of Thermal Sciences, 75, 184-193.
http://dx.doi.org/10.1016/j.ijthermalsci.2013.08.008

[22]   Kozak, Y., Rozenfeld, T. and Ziskind, G. (2014) Close-Contact Melting in Vertical Annular Enclosures with a NonIsothermal Base: Theoretical Modeling and Application to Thermal Storage. International Journal of Heat and Mass Transfer, 72, 114-127.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2013.12.058

[23]   Baby, R. and Balaji, C. (2012) Experimental Investigations on Phase Change Material Based Finned Heat Sinks for Electronic Equipment Cooling. International Journal of Heat and Mass Transfer, 55, 1642-1649.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2011.11.020

[24]   Al-Abidia, A.A., Mata, S.B., Sopiana, K., Sulaiman, M.Y. and Mohammada, A.T. (2014) Experimental Study of Melting and Solidification of PCM in a Triplex Tube Heat Exchanger with Fins. Energy and Buildings, 68, 33-41.
http://dx.doi.org/10.1016/j.enbuild.2013.09.007

[25]   Al-Abidi, A.A., Mat, S., Sopian, K., Sulaiman, M.Y. and Mohammad, A.Th. (2013) Internal and External Fin Heat Transfer Enhancement Technique for Latent Heat Thermal Energy Storage in Triplex Tube Heat Exchangers. Applied Thermal Engineering, 53, 147-156.
http://dx.doi.org/10.1016/j.applthermaleng.2013.01.011

[26]   Campos-Celadora, á., Diarceb, G., Zubiagac, J.T., Bandosc, T.V., García-Romerob, A.M., López, L.M. and Salac, J.M. (2014) Design of a Finned Plate Latent Heat Thermal Energy Storage System for Domestic Applications. Energy Procedia, 48, 300-308.
http://dx.doi.org/10.1016/j.egypro.2014.02.035

[27]   Liu, Z.L., Sun, X. and Ma, C.F. (2005) Experimental Investigations on the Characteristics of Melting Processes of Stearic Acid in an Annulus and Its Thermal Conductivity Enhancement by Fins. Energy Conversion and Management, 46, 959-969.
http://dx.doi.org/10.1016/j.enconman.2004.05.012

[28]   Tay, N.H.S., Bruno, F. and Belusko, M. (2013) Experimental Investigation of Dynamic Melting in a Tube-in-Tank PCM System. Applied Energy, 104, 137-148.
http://dx.doi.org/10.1016/j.apenergy.2012.11.035

[29]   Tay, N.H.S., Bruno, F. and Belusko, M. (2012) Experimental Validation of a CFD and an e-NTU Model for a Large Tube-in-Tank PCM System. International Journal of Heat and Mass Transfer, 55, 5931-5940.
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.06.004

[30]   Tay, N.H.S., Bruno, F. and Belusko, M. (2012) Designing a PCM Storage System Using the Effectiveness-Number of Transfer Units Method in Low Energy Cooling of Buildings. Energy and Buildings, 50, 234-242.
http://dx.doi.org/10.1016/j.enbuild.2012.03.041

[31]   Liu, C. and Groulx, D. (2014) Experimental Study of the Phase Change Heat Transfer Inside a Horizontal Cylindrical Latent Heat Energy Storage System. International Journal of Thermal Sciences, 82, 100-110.

[32]   Moreno, P., Solé, C., Castell, A. and Cabeza, L.F. (2014) The Use of Phase Change Materials in Domestic Heat Pump and Air-Conditioning Systems for Short Term Storage: A Review. Renewable and Sustainable Energy Reviews, 39, 113.
http://dx.doi.org/10.1016/j.rser.2014.07.062

[33]   Lopez-Navarro, A., Biosca-Taronger, J., Corberan, J.M., Penalosa, C., Lazaro, A., Dolad, P. and Paya, J. (2014) Performance Characterization of a PCM Storage Tank. Applied Energy, 119, 151-162.
http://dx.doi.org/10.1016/j.apenergy.2013.12.041

[34]   Moreno, P., Miró, L., Solé, A., Barreneche, C., Solé, C., Martorell, I. and Cabeza, L.F. (2014) Corrosion of Metal and Metal Alloy Containers in Contact with Phase Change Materials (PCM) for Potential Heating and Cooling Applications. Applied Energy, 125, 238-245.
http://dx.doi.org/10.1016/j.apenergy.2014.03.022

 
 
Top