JMP  Vol.6 No.2 , February 2015
Adaptive Isochronal Synchronization in Mutually Coupled Chaotic Systems
Author(s) Da Lin1*, Hong Song1, Yi Yao1, Fuchen Zhang2
ABSTRACT
This paper studies the problem of isochronal synchronization of chaotic systems with time-delayed mutual coupling. Based on the invariance principle of differential equations, an adaptive feedback scheme is proposed for the stability of isochronal synchronization between two identical chaotic systems. Unlike the usual linear feedback, the variable feedback strength is automatically adapted to isochronally synchronize two identical chaotic systems with delay-coupled, so this scheme is analytical, and simple to implement in practice. Simulation results show that the isochronal synchronization behavior is determined by time delay.

Cite this paper
Lin, D. , Song, H. , Yao, Y. and Zhang, F. (2015) Adaptive Isochronal Synchronization in Mutually Coupled Chaotic Systems. Journal of Modern Physics, 6, 150-156. doi: 10.4236/jmp.2015.62020.
References
[1]   Blekhman, I.I. (1988) Synchronization in Science and Technology. ASME Press, New York.

[2]   Pikovsky, A., Rosenblum, M. and Kurths, J. (2001) Synchronization: A Universal Concept in Nonlinear Sciences. Cambridge University Press, Cambridge, UK.
http://dx.doi.org/10.1017/CBO9780511755743

[3]   Boccaletti, S., Kurths, J., Osipov, G., Valladaress, D.L. and Zhou, C.S. (2002) Physics Reports, 366, 1-101.
http://dx.doi.org/10.1016/S0370-1573(02)00137-0

[4]   Miranda, J.M.G. (2004) Synchronization and Control of Chaos: An Introduction for Scientists and Engineers. Imperial College Press, London.

[5]   Khordad, R., Dehghani, M.A. and Dehghani, A. (2014) International Journal of Modern Physics C, 25, Article ID: 1350085.
http://dx.doi.org/10.1142/S012918311350085X

[6]   Chen, K.Y., Tung, P.C., Lin, S.L. and Tsai, M.T. (2011) International Journal of Modern Physics C, 22, 1409-1418.
http://dx.doi.org/10.1142/S0129183111017007

[7]   Rakkiyappan, R., Sivasamy, R. and Lakshmanan, S. (2014) Chinese Physics B, 23, Article ID: 060504.
http://dx.doi.org/10.1088/1674-1056/23/6/060504

[8]   Li, P., Yi, Z. and Zhang, L. (2006) Choas, Solitons & Fractals, 30, 903-908.
http://dx.doi.org/10.1016/j.chaos.2005.08.169

[9]   Wagemakers, A., Buldu, J.M. and Sanjuan, M.A.F. (2007) Chaos, 17, Article ID: 023128.
http://dx.doi.org/10.1063/1.2737820

[10]   Landsman, A. and Schwartz, I.B. (2007) Physical Review E, 75, Article ID: 026201.
http://dx.doi.org/10.1103/PhysRevE.75.026201

[11]   Llein, E., Gross, N., Rosenbluh, M., Kinzel, W., Khaykovich, L. and Kanter, I. (2006) Physical Review E, 73, Article ID: 066214.
http://dx.doi.org/10.1103/PhysRevE.73.066214

[12]   Zhou, B.B. and Roy, R. (2007) Physical Review E, 75, Article ID: 026205.
http://dx.doi.org/10.1103/PhysRevE.75.026205

[13]   Grzybowski, J.M.V., Macau, E.E.N. and Yoneyama, T. (2011) Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 175103.
http://dx.doi.org/10.1088/1751-8113/44/17/175103

[14]   Avila, J.F.M. and Rios Leite, J.R. (2009) Optics Express, 17, 21442-21453.
http://dx.doi.org/10.1364/OE.17.021442

[15]   Wagemakers, A., Buldu, J.M. and Sanjuan, M.A.F. (2008) Europhysics Letters, 81, Article ID: 40005.
http://dx.doi.org/10.1209/0295-5075/81/40005

[16]   Illing, L., Panda, C.D. and Shareshian, L. (2011) Physical Review E, 84, Article ID: 016213.
http://dx.doi.org/10.1103/PhysRevE.84.016213

[17]   Shuai, J.W., Wong, K.W. and Cheng, L.M. (1997) Physical Review E, 56, 2272-2275.
http://dx.doi.org/10.1103/PhysRevE.56.2272

[18]   Barreto, E., So, P., Gluckman, B.J. and Schiff, S.J. (2000) Physical Review Letters, 84, 1689-1692.
http://dx.doi.org/10.1103/PhysRevLett.84.1689

[19]   Lasalle, J.P. (1960) IRE Transaction Circuit Theory, 7, 520-527.
http://dx.doi.org/10.1109/TCT.1960.1086720

[20]   Lorenz, E.N. (1963) Journal of the Atmospheric Sciences, 20, 130-144.
http://dx.doi.org/10.1175/1520-0469(1963)020

 
 
Top