[1] Sivakumar, B. (2003) Forecasting Monthly Streamflow Dynamics in the Western United States: A Nonlinear Dynamical Approach. Environmental Modelling & Software, 18, 721-728.
http://dx.doi.org/10.1016/S1364-8152(03)00074-4
[2] Asefa, T., Kemblowski, M., McKee, M. and Khalil, A. (2006) Multi-Time Scale Stream Flow Predictions: The Support Vector Machines Approach. Journal of Hydrology, 318, 7-16.
http://dx.doi.org/10.1016/j.jhydrol.2005.06.001
[3] Khalil, A.F., McKee, M., Kemblowski, M. and Asefa, T. (2005) Basin Scale Water Management and Forecasting Using Artificial Neural Networks. JAWRA Journal of the American Water Resources Association, 41, 195-208.
http://dx.doi.org/10.1111/j.1752-1688.2005.tb03728.x
[4] Kalra, A. and Ahmad, S. (2011) Improving Streamflow Forecast Using Predefined Seas Surface Temperature. American Geophysical Meeting, San Francisco, 5-9 December 2011.
[5] Tootle, G.A. and Piechota, T.C. (2006) Relationships between Pacific and Atlantic Ocean Sea Surface Temperatures and U.S. Streamflow Variability. Water Resources Research, 42, W07411.
http://dx.doi.org/10.1029/2005WR004184
[6] Shrestha, N.K. (2014) Long Lead-Time Streamflow Forecasting Using Oceanic-Atmospheric Oscillation Indices. Journal of Water Resources and Protection, 6, 635-653.
http://dx.doi.org/10.4236/jwarp.2014.66062
[7] Shrestha, N.K. and Shukla, S. (2014) Basal Crop Coefficient for Vine and Erect Crops with Plastic Mulch in a Sub-Tropical Region. Agricultural Water Management, 143, 29-37.
http://dx.doi.org/10.1016/j.agwat.2014.05.011
[8] Shukla, S., Shrestha, N.K. and Goswami, D. (2014) Evapotranspiration and Crop Coefficient for Seepage-Irrigated Watermelon with Plastic Mulch in a Sub-Tropical Region. Transactions of the ASABE, 57, 1017-1028.
[9] Shukla, S., Shrestha, N.K., Jaber, F.H., Srivastava, S., Obreza, T.A. and Boman, B.J. (2014) Evapotranspiration and Crop Coefficient for Watermelon Grown under Plastic Mulched Conditions in Sub-Tropical Florida. Agricultural Water Management, 132, 1-9.
http://dx.doi.org/10.1016/j.agwat.2013.09.019
[10] Hamlet, A.F. and Lettenmaier, D.P. (1999) Columbia River Streamflow Forecasting Based on ENSO and PDO Climate Signals. Journal of Water Resources Planning and Management, 125, 333-341.
http://dx.doi.org/10.1061/(ASCE)0733-9496(1999)125:6(333)
[11] Khalil, A.F., McKee, M., Kemblowski, M., Asefa, T. and Bastidas, L. (2006) Multiobjective Analysis of Chaotic Dynamic Systems with Sparse Learning Machines. Advances in Water Resources, 29, 72-88.
http://dx.doi.org/10.1016/j.advwatres.2005.05.011
[12] Shrestha, N.K. and Shukla, S. (2015) Support Vector Machine Based Modeling of Evapotranspiration Using Hydro-Climatic Variables in a Sub-Tropical Environment. Agricultural and Forest Meteorology, 200, 172-184.
http://dx.doi.org/10.1016/j.agrformet.2014.09.025
[13] Tipping, M. (2001) Sparse Bayesian Learning and the Relevance Vector Machine. Journal of Machine Learning Research, 1, 211-244.
[14] Ticlavilca, A. (2010) Multivariate Bayesian Machine Learning Regression for Operation and Management of Multiple Reservoir, Irrigation Canal, and River Systems. Ph.D. Dissertation, Utah State University, Logan.
[15] Perica, S. and Stayner, M. (2004) Regional Flood Frequency Analysis for Selected Basins in Utah. Utah Department of Transportation Research and Development Division, Salt Lake City.
[16] Vapnik, V.N. (1995) The Nature of Statistical Learning Theory. Springer Verlag, New York.
http://dx.doi.org/10.1007/978-1-4757-2440-0
[17] Vapnik, V.N. (1998) The Nature of Statistical Learning Theory. Springer Verlag, New York.
[18] Tipping, M. (2000) The Relevance Vector Machine. Proceeding of Advances in Neural Information Processing Systems, the MIT Press, 652-658.
[19] Thayananthan, A. (2005) Template-Based Pose Estimation and Tracking of 3D Hand Motion. PhD Dissertation, University of Cambridge, Cambridge.
[20] Tipping, M.E. and Faul, A.C. (2003) Fast Marginal Likelihood Maximization for Sparse Bayesian Models. Proceedings of the 9th International Workshop on Artificial Intelligence and Statistics, Key West, 3-6 January 2003.
[21] Dibike, Y., Velickov, S., Solomatine, D. and Abbott, M. (2001) Model Induction with Support Vector Machines: Introduction and Applications. Journal of Computing in Civil Engineering, 15, 208-216.
http://dx.doi.org/10.1061/(ASCE)0887-3801(2001)15:3(208)
[22] Scholkopf, B. and Smola, A.J. (2002) Learning with Kernels: Support Vector Machines, Regularization, Optimization, and Beyond. MIT Press, Cambridge.
[23] Smith, T.M. and Reynolds, R.W. (2003) Extended Reconstruction of Global Sea Surface Temperatures Based on COADS Data (1854-1997). Journal of Climate, 16, 1495-1510.
http://dx.doi.org/10.1175/1520-0442-16.10.1495
[24] Soukup, T.L., Aziz, O.A., Tootle, G.A., Piechota, T.C. and Wulff, S.S. (2009) Long Lead-Time Streamflow Forecasting of the North Platte River Incorporating Oceanic-Atmospheric Climate Variability. Journal of Hydrology, 368, 131-142.
http://dx.doi.org/10.1016/j.jhydrol.2008.11.047
[25] Efron, B. and Tibshirani, R.J. (1998) An Introduction of the Bootstrap, Monographs on Statistics and Applied Probability. CRC Press LLC, Boca Raton.
[26] Ting, M. and Wang, H. (1997) Summertime U.S. Precipitation Variability and Its Relation to Pacific Sea Surface Temperature. Journal of Climate, 10, 1853-1873.
http://dx.doi.org/10.1175/1520-0442(1997)010<1853:SUSPVA>2.0.CO;2
[27] Wang, H. and Ting, M. (2000) Covariabilities of Winter U.S. Precipitation and Pacific Sea Surface Temperatures. Journal of Climate, 13, 3711-3719.
http://dx.doi.org/10.1175/1520-0442(2000)013<3711:COWUSP>2.0.CO;2