[1] Gupta, R., Beg, Q. and Lorenz, P. (2002) Bacterial Alkaline Proteases: Molecular Approaches and Industrial Applications. Applied Microbiology and Biotechnology, 59, 15-32.
http://dx.doi.org/10.1007/s00253-002-0975-y
[2] Cowan, D. (1996) Industrial Enzyme Technology. Trends Biotechnology, 4, 177-178.
http://dx.doi.org/10.1016/0167-7799(96)30009-7
[3] Kumar, C.G. and Takagi, H. (1999) Microbial Alkaline Proteases from a Bioindustrial Viewpoint. Biotechnology Advances, 17, 561-594.
http://dx.doi.org/10.1016/S0734-9750(99)00027-0
[4] Ben Khaled, H., Ktari, N., Ghorbel-Bellaaj, O., Jridi, M., Lassoued, I. and Nasri, M. (2011) Composition, Functional Properties and in Vitro Antioxidant Activity of Protein Hydrolysates Prepared from Sardinelle (Sardinella aurita) Muscle. Journal of Food Science Technology, 51, 622-633.
http://dx.doi.org/10.1007/s13197-011-0544-4
[5] Ktari, N., Fakhfakh, N., Balti, R., Ben Khaled, H., Nasri, M. and Bougatef, A. (2012) Effect of Degree of Hydrolysis and Protease Type on the Antioxidant Activity of Protein Hydrolysates from Cuttlefish (Sepia officinalis) By-Products. Journal of Food Science Technology, 22, 436-448.
[6] Anwar, A. and Saleemuddin, M. (1998) Alkaline Proteases: A Review. Bioresource Technology, 64, 175-183.
http://dx.doi.org/10.1016/S0960-8524(97)00182-X
[7] Samal, B.B., Kara, B. and Stabinsky, Y. (1990) Stability of Two Novel Serine Proteinases in Commercial Laundry Detergent Formulations. Biotechnology Bioengeiniring, 35, 650-652.
http://dx.doi.org/10.1002/bit.260350611
[8] Banerjee, U.C., Sani, R.K., Azmi, W. and Soni, R. (1999) Thermostable Alkaline Protease from Bacillus brevis and Its Characterization as a Laundry Detergent Additive. Process Biochemestry, 35, 213-219.
http://dx.doi.org/10.1016/S0032-9592(99)00053-9
[9] Siala, R., Fakhfakh, N., Hamza-Mnif, I., Nasri, M., Vallaeys, T. and Sellami-Kamoun, A. (2012) Arthrobacter arilaitensis Re117 Oxidant-Stable Alkaline Metalloprotease: Purification and Biochemical Characterization. Biotechnology and Bioprocess Engineering, 17, 556-564.
http://dx.doi.org/10.1007/s12257-011-0478-8
[10] Shahidi, F. and Synowiecki, J. (1991) Isolation and Characterization of Nutrients and Value-Added Products from Snow Crab (Chinoecetes opilio) and Shrimp (Pandalus borealis) Processing Discards. Journal of Agriculture and Food Chemestry, 39, 1527-1532.
http://dx.doi.org/10.1021/jf00008a032
[11] Bhaskar, N., Suresh, P.V., Sakhare, P.Z. and Sachindra, N.M. (2007) Shrimp Biowaste Fermentation with Pediococcus acidolactici CFR2182: Optimization of Fermentation Conditions by Response Surface Methodology and Effect of Optimized Conditions on Deproteination/Demineralization and Carotenoid Recovery. Enzyme and Microbial Technology, 40, 1427-1434.
http://dx.doi.org/10.1016/j.enzmictec.2006.10.019
[12] Sini, T.K., Santhosh, S. and Mathew, P.T. (2007) Study on the Production of Chitin and Chitosan from Shrimp Shell by Using Bacillus subtilis Fermentation. Carbohydrate Research, 342, 2423-2429.
http://dx.doi.org/10.1016/j.carres.2007.06.028
[13] Rinaudo, M. (2006) Chitin and Chitosan: Properties and Applications. Progress in Polymer Science, 31, 603-632.
http://dx.doi.org/10.1016/j.progpolymsci.2006.06.001
[14] Ghorbel-Bellaaj, O., Hmidet, N., Jellouli, K., Younes, I., Maalej, H., Hachicha, R. and Nasri, M. (2011) Shrimp Waste Fermentation with Pseudomonas aeruginosa A2: Optimization of Chitin Extraction Conditions through Plackett-Burman and Response Surface Methodology Approaches. International Journal of Biological Macromolecules, 48, 596-602.
http://dx.doi.org/10.1016/j.ijbiomac.2011.01.024
[15] Jo, G.H., Jung, W.J., Kuk, J.H., Oh, K.T., Kim, Y.J. and Park, R.D. (2008) Screening of Protease-Producing Serratia marcescens FS-3 and Its Application to Deproteinization of Crab Shell Waste for Chitin Extraction. Carbohydrate Polymers, 74, 504-508.
http://dx.doi.org/10.1016/j.carbpol.2008.04.019
[16] Ghorbel-Bellaaj, O., Jellouli, K., Younes, I., Manni, L., Ouled Salem, M. and Nasri, M. (2011) A Solvent-Stable Metalloprotease Produced by Pseudomonas aeruginosa A2 Grown on Shrimp Shell Waste and Its Application in Chitin Extraction. Applied Biochemistry and Biotechnology, 164, 410-425.
http://dx.doi.org/10.1007/s12010-010-9144-4
[17] Manni, L., Jellouli, K., Ghorbel-Bellaaj, O., Agrebi, R., Haddar, A., Sellami-Kamoun, A. and Nasri, M. (2010) An Oxidant- and Solvent-Stable Protease Produced by Bacillus cereus SV1: Application in the Deproteinization of Shrimp Wastes and as a Laundry Detergent Additive. Applied Biochemistry and Biotechnology, 160, 2308-2321.
http://dx.doi.org/10.1007/s12010-009-8703-z
[18] Laemmli, U.K. (1970) Cleavage of Structural Proteins during the Assembly of the Head of Bacteriophage T4. Nature, 227, 680-685.
http://dx.doi.org/10.1038/227680a0
[19] Garcia-Carreno, F.L., Dimes, L.E. and Haard, N.F. (1993) Substrate-Gel Electrophoresis for Composition and Molecular Weight of Proteinases or Proteinaceous Proteinase Inhibitors. Analytical Biochemistry, 214, 65-69.
http://dx.doi.org/10.1006/abio.1993.1457
[20] Kembhavi, A.A., Kulkarni, A. and Pant, A. (1993) Salt-Tolerant and Thermostable Alkaline Protease from Bacillus subtilis NCIM No.64. Applied Biochemistry and Biotechnology, 38, 83-92.
http://dx.doi.org/10.1007/BF02916414
[21] Rao, M.S., Muñoz, J. and Stevens, W.F. (2000) Critical Factors in Chitin Production by Fermentation of Shrimp Biowaste. Applied Microbiology and Biotechnology, 54, 808-813.
http://dx.doi.org/10.1007/s002530000449
[22] Maurer, K.H. (2004) Detergent Proteases. Current Opinion in Biotechnology, 15, 330-334.
http://dx.doi.org/10.1016/j.copbio.2004.06.005
[23] Male, R., Lorens, L.B., Smalas, A.O. and Torrissen, K.R. (1995) Molecular Cloning and Characterization of Anionic and Cationic Variants of Trypsin from Atlantic Salmon. European Journal of Biochemistry, 232, 677-685.
http://dx.doi.org/10.1111/j.1432-1033.1995.677zz.x
[24] Bezerra, R.S., Lins, E.J.F., Alencar, R.B., Paiva, P.M.G., Chaves, M.E.C., Coelho, L.C.B.B. and Carvalho Jr., L.B. (2005) Alkaline Proteinase from Intestine of Nile Tilapia (Oreochromis niloticus). Process Biochemistry, 40, 1829-1834.
http://dx.doi.org/10.1016/j.procbio.2004.06.066
[25] El-Hadj Ali, N., Hmidet, N., Ghorbel-Bellaaj, O., Fakhfakh-Zouari, N., Bougatef, A. and Nasri, M. (2011) Solvent-Stable Digestive Alkaline Proteinases from Striped Seabream (Lithognathus mormyrus) Viscera: Characteristics, Application in the Deproteinization of Shrimp Waste, and Evaluation in Laundry Commercial Detergents. Applied Biochemistry and Biotechnology, 164, 1096-1110.
http://dx.doi.org/10.1007/s12010-011-9197-z
[26] Klomklao, S., Benjakul, S. and Visessanguan, W. (2004) Comparative Studies on Proteolytic Activity of Splenic Extracts from Three Tuna Species Commonly Used in Thailand. Journal of Food Biochemistry, 28, 355-372.
http://dx.doi.org/10.1111/j.1745-4514.2004.05203.x
[27] Gupta, R., Gupta, K., Saxena, R.K. and Khan, S. (1999) Bleach-Stable Alkaline Protease from Bacillus sp. Biotechnology Letters, 21, 135-138.
http://dx.doi.org/10.1023/A:1005478117918
[28] Vulfson, E.N., Halling, P.J. and Holland, H.L. (2001) Methods in Biotechnology: Enzymes in Nonaqueous Solvents. Part II, Vol. 532, 241-422.
[29] Oh, K.T., Kim, Y.J., Nguyen, V.N., Jung, W.J. and Park, R.D. (2007) Demineralization of Crab Shell Waste by Peudomonas aeruginosa F722. Process Biochemistry, 42, 1069-1074.
http://dx.doi.org/10.1016/j.procbio.2007.04.007
[30] Wang, S.L., Hsu, W.T., Liang, T.W., Yen, Y.H. and Wang, C.L. (2008) Purification and Characterization of Three Novel Keratinolytic Metalloproteases Produced by Chryseobacterium indologenes TKU014 in a Shrimp Shell Powder Medium. Bioresource Technology, 99, 5679-5686.
http://dx.doi.org/10.1016/j.biortech.2007.10.024
[31] Bustos, R.O. and Healy, M.G. (1994) Microbial Deproteinization of Waste Prawn Shell. Institution of Chemical Engineers Symposium Series, Institution of Chemical Engineers, Rugby, 13-15.
[32] Oh, Y.S., Shih, I.L., Tzeng, Y.M. and Wang, S.L. (2000) Protease Produced by Pesudomonas aeroginosa K-187 and Its Application in the Deproteinization of Shrimp and Crab Shell Wastes. Enzyme and Microbial Technology, 27, 3-10.
http://dx.doi.org/10.1016/S0141-0229(99)00172-6