JBiSE  Vol.8 No.2 , February 2015
Modern Probe-Assisted Methods for the Specific Detection of Bacteria
ABSTRACT
This review intends to present an overview of methods currently under development for the specific and sensitive detection of pathogenic bacteria that exist in a variety of human environments. Bacteria continue to be a major health threat in general, and much effort is being deployed to counteract this problem. In a first instance, current and efficient techniques in use for the detection of bacteria are described. In a second instance, this review serves to compare the more conventional techniques to emerging technologies for the direct (non-labelled) detection of bacteria (referred to as “biosensors”). These approaches are mainly optical, piezoelectric, and electro-chemical in nature. They are cost-effective, quite sensitive, and potentially portable for rapid on-site/real-time detection, and rapid prevention. These devices are comprised of specific chemical/ biochemical probes immobilized onto physical transducers. This work also presents comparisons between the efficiencies (assay time and sensitivity) of various techniques being employed.

Cite this paper
Shabani, A. , Marquette, C. , Mandeville, R. and Lawrence, M. (2015) Modern Probe-Assisted Methods for the Specific Detection of Bacteria. Journal of Biomedical Science and Engineering, 8, 104-121. doi: 10.4236/jbise.2015.82011.
References
[1]   Rowe, P.C., Orrbine, E., Lior, H., Wells, G.A., Yetisir, E., Clulow, M. and McLaine, P.N. (1998) Risk of Hemolytic Uremic Syndrome after Sporadic Escherichia coli O157:H7 Infection: Results of a Canadian Collaborative Study. The Journal of Pediatrics, 132, 777-782.
http://dx.doi.org/10.1016/S0022-3476(98)70303-8

[2]   Deisingh, A.K. and Thompson, M. (2002) Detection of Infectious and Toxigenic Bacteria. The Analyst, 127, 567-581.
http://dx.doi.org/10.1039/b109895k

[3]   Shangkuan, Y.-H. and Lin, H.-C. (1998) Application of Random Amplified Polymorphic DNA Analysis to Differentiate Strains of Salmonella typhi and Other Salmonella species. Journal of Applied Microbiology, 85, 693-702.
http://dx.doi.org/10.1111/j.1365-2672.1998.00582.x

[4]   Ivnitski, D., Abdel-Hamid, I., Atanasov, P. and Wilkins, E. (1999) Biosensors for Detection of Pathogenic Bacteria. Biosensors and Bioelectronics, 14, 599-624.
http://dx.doi.org/10.1016/S0956-5663(99)00039-1

[5]   https://microbiologybytes.wordpress.com

[6]   Rossi, T.M. and Warner, I.M. (1985) Pattern Recognition of Two-Dimensional Fluorescence Data Using Cross-Correlation Analysis. Applied Spectroscopy, 39, 949-959.
http://dx.doi.org/10.1366/0003702854249501

[7]   Beverly, M.B., Basile, F., Voorhees, K.J. and Hadfield, T.L. (1996) A Rapid Approach for the Detection of Dipicolinic Acid in Bacterial Spores Using Pyrolysis/Mass Spectrometry. Rapid Communications in Mass Spectrometry, 10, 455- 458.
http://dx.doi.org/10.1002/(SICI)1097-0231(19960315)10:4<455::AID-RCM500>3.0.CO;2-Y

[8]   Fox, A., Black, G.E., Fox, K. and Rostovtseva, S. (1993) Determination of Carbohydrate Profiles of Bacillus anthracis and Bacillus cereus Including Identification of O-Methyl Methylpentoses by Using Gas Chromatography-Mass Spectrometry. Journal of Clinical Microbiology, 31, 887-894.

[9]   Goodacre, R., Shann, B., Gilbert, R.J., Timmins, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B. and Logan, N.A. (2000) Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 72, 119-127.
http://dx.doi.org/10.1021/ac990661i

[10]   Quinlan, J.J. and Foegeding, P.M. (1997) Monoclonal Antibodies for Use in Detection of Bacillus and Clostridium Spores. Applied and Environmental Microbiology, 63, 482-487.

[11]   Zhou, B., Wirsching, P. and Janda, K.D. (2002) Human Antibodies against Spores of the Genus Bacillus: A Model Study for Detection of and Protection against Anthrax and the Bioterrorist Threat. Proceedings of the National Academy of Sciences of the United States of America, 99, 5241-5246.
http://dx.doi.org/10.1073/pnas.082121599

[12]   Fergenson, D.P., Pitesky, M.E., Tobias, H.J., Steele, P.T., Czerwieniec, G.A., Russell, S.C., Lebrilla, C.B., Horn, J.M., Coffee, K.R., Srivastava, A., Pillai, S.P., Shih, M.T.P., Hall, H.L., Ramponi, A.J., Chang, J.T., Langlois, R.G., Estacio, P.L., Hadley, R.T., Frank, M. and Gard, E.E. (2004) Reagentless Detection and Classification of Individual Bioaerosol Particles in Seconds. Analytical Chemistry, 76, 373-378.
http://dx.doi.org/10.1021/ac034467e

[13]   Huang, J., Li, Y., Slavik, M.F., Tao, Y. and Huff, G.R. (1999) Identification and Enumeration of Salmonella on Sample Slides of Poultry Carcass Wash-Water Using Image Analysis with Fluorescent Microscopy. Transactions of the ASAE, 42, 267-273.
http://dx.doi.org/10.13031/2013.13204

[14]   Prosser, J.I., Killham, K., Glover, L.A. and Rattray, E.A. (1996) Luminescence-Based Systems for Detection of Bacteria in the Environment. Critical Reviews in Biotechnology, 16, 157-183.
http://dx.doi.org/10.3109/07388559609147420

[15]   Dickinson, B. (2002) Introduction to Flow Cytometry: A Learning Guide. Becton, Dickinson and Company, Franklin Lakes.

[16]   Boye, E. and Loebner-Olesen, A. (1991) Bacterial Growth Control Studied by Flow Cytometry. Research in Microbiology, 142, 131-135.
http://dx.doi.org/10.1016/0923-2508(91)90020-B

[17]   Wu, L., Luan, T., Yang, X., Wang, S., Zheng, Y., Huang, T., Zhu, S. and Yan, X. (2014) Trace Detection of Specific Viable Bacteria Using Tetracysteine-Tagged Bacteriophages. Analytical Chemistry, 86, 907-912.
http://dx.doi.org/10.1021/ac403572z

[18]   Thevenot, D.R., Toth, K., Durst, R.A. and Wilson, G.S. (1999) Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry, 71, 2333-2348.
http://dx.doi.org/10.1351/pac199971122333

[19]   Turner, A.P.F., Wilson, G. and Kaube, I., Eds. (1987) Biosensors: Fundamentals and Applications. Oxford University Press, Oxford.

[20]   Banica, F.G. (2012) Chemical Sensors and Biosensors: Fundamentals and Applications. John Wiley & Sons, Chichester.
http://dx.doi.org/10.1002/9781118354162

[21]   Cavalcanti, A., Shirinzadeh, B., Freitas Jr., R.A. and Hogg, T. (2008) Nanorobot Architecture for Medical Target Identification. Nanotechnology IOP, 19, Article ID: 015103.
http://dx.doi.org/10.1088/0957-4484/19/01/015103

[22]   Cavalcanti, A., Shirinzadeh, B., Zhang, M.J. and Kretly, L.C. (2008) Nanorobot Hardware Architecture for Medical Defense. Sensors, 8, 2932-2958.
http://dx.doi.org/10.3390/s8052932

[23]   Sethi, R.S. (1994) Transducer Aspects of Biosensors. Biosensors & Bioelectronics, 9, 243-263.
http://dx.doi.org/10.1016/0956-5663(94)80127-4

[24]   Barak, O., Treat James, R. and James William, D. (2005) Antimicrobial Peptides: Effectors of Innate Immunity in the Skin. Advances in Dermatology, 21, 357-374.
http://dx.doi.org/10.1016/j.yadr.2005.07.001

[25]   Williams, D.D., Benedek, O. and Turnbough Jr., C.L. (2003) Species-Specific Peptide Ligands for the Detection of Bacillus anthracis Spores. Applied and Environmental Microbiology, 69, 6288-6293.
http://dx.doi.org/10.1128/AEM.69.10.6288-6293.2003

[26]   Lee, T.C., Yusoff, K., Nathan, S. and Tan, W.S. (2006) Detection of Virulent Newcastle Disease Virus Using a Phagecapturing Dot Blot Assay. Journal of Virological Methods, 136, 224-229.
http://dx.doi.org/10.1016/j.jviromet.2006.05.017

[27]   Shabani, A., Mak, A.W.H., Gerges, I., Polychronakos, C. and Lawrence, M.F. (2006) DNA Immobilization onto Electrochemically Functionalized Si(100) Surfaces. Talanta, 70, 615-623.
http://dx.doi.org/10.1016/j.talanta.2006.01.033

[28]   Lenigk, R., Carles, M., Ip, N.Y. and Sucher, N.J. (2001) Surface Characterization of a Silicon-Chip-Based DNA Microarray. Langmuir, 17, 2497-2501.
http://dx.doi.org/10.1021/la001355z

[29]   Lee, J.F., Stovall, G.M. and Ellington, A.D. (2006) Aptamer Therapeutics Advance. Current Opinion in Chemical Biology, 10, 282-289.

[30]   http://dx.doi.org/10.1016/j.cbpa.2006.03.015

[31]   Awais, R., Fukudomi, H., Miyanaga, K., Unno, H. and Tanji, Y. (2006) A Recombinant Bacteriophage-Based Assay for the Discriminative Detection of Culturable and Viable but Nonculturable Escherichia coli O157:H7. Biotechnology Progress, 22, 853-859.
http://dx.doi.org/10.1021/bp060020q

[32]   Olsen, E.V., Sorokulova, I.B., Petrenko, V.A., Chen, I.H., Barbaree, J.M. and Vodyanoy, V.J. (2006) Affinity-Selected Filamentous Bacteriophage as a Probe for Acoustic Wave Biodetectors of Salmonella typhimurium. Biosensors and Bioelectronics, 21, 1434-1442.
http://dx.doi.org/10.1016/j.bios.2005.06.004

[33]   Shabani, A., Zourob, M., Allain, B., Marquette, C.A., Lawrence, M.F. and Mandeville, R. (2008) Bacteriophage-Modified Microarrays for the Direct Impedimetric Detection of Bacteria. Analytical Chemistry, 80, 9475-9482.
http://dx.doi.org/10.1021/ac801607w

[34]   Kutter, E. and Sulakvelidze, A. (2004) Bacteriophages: Biology and Applications. CRC Press, Washington DC.
http://dx.doi.org/10.1201/9780203491751

[35]   Birge, E.A. (2006) Bacterial and Bacteriophage Genetics. Fifth Edition, Springer Science, New York.

[36]   Ivnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E. and Stricker, S. (2000) Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria. Electroanalysis, 12, 317-325.
http://dx.doi.org/10.1002/(SICI)1521-4109(20000301)12:5<317::AID-ELAN317>3.0.CO;2-A

[37]   Swenson, F.J. (1993) Development and Evaluation of Optical Sensors for the Detection of Bacteria. Sensors and Actuators B: Chemical, 11, 315-321.
http://dx.doi.org/10.1016/0925-4005(93)85270-K

[38]   Schneider, B.H., Edwards, J.G. and Hartman, N.F. (1997) Hartman Interferometer: Versatile Integrated Optic Sensor for Label-Free, Real-Time Quantification of Nucleic Acids, Proteins, and Pathogens. Clinical Chemistry, 43, 1757- 1763.

[39]   Raether, H. (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Verlag, Berlin.

[40]   Taylor, A.D., Yu, Q., Chen, S., Homola, J. and Jiang, S. (2005) Comparison of E. coli O157:H7 Preparation Methods Used for Detection with Surface Plasmon Resonance Sensor. Sensors and Actuators B: Chemical, 107, 202-208.
http://dx.doi.org/10.1016/j.snb.2004.11.097

[41]   Fratamico, P.M., Strobaugh, T.P., Medina, M.B. and Gehring, A.G. (1998) Detection of Escherichia coli O157:H7 Using a Surface Plasmon Resonance Biosensor. Biotechnology Techniques, 12, 571-576.
http://dx.doi.org/10.1023/A:1008872002336

[42]   Tawil, N., Sacher, E., Mandeville, R. and Meunier, M. (2012) Surface Plasmon Resonance Detection of E. coli and Methicillin-Resistant S. aureus Using Bacteriophages. Biosensors and Bioelectronics, 37, 24-29.
http://dx.doi.org/10.1016/j.bios.2012.04.048

[43]   Tawil, N., Mouawad, F., Levesque, S., Sacher, E., Mandeville, R. and Meunier, M. (2013) The Differential Detection of Methicillin-Resistant, Methicillin-Susceptible and Borderline Oxacillin-Resistant Staphylococcus aureus by Surface Plasmon Resonance. Biosensors and Bioelectronics, 49, 334-340.
http://dx.doi.org/10.1016/j.bios.2013.05.031

[44]   Tawil, N., Sacher, E., Mandeville, R. and Meunier, M. (2013) Strategies for the Immobilization of Bacteriophages on Gold Surfaces Monitored by Surface Plasmon Resonance and Surface Morphology. The Journal of Physical Chemistry C, 117, 6686-6691.
http://dx.doi.org/10.1021/jp400565m

[45]   Taitt, C.R., Anderson, G.P. and Ligler, F.S. (2005) Evanescent Wave Fluorescence Biosensors. Biosensors and Bioelectronics, 20, 2470-2487.
http://dx.doi.org/10.1016/j.bios.2004.10.026

[46]   Ko, S. and Grant, S.A. (2006) A Novel FRET-Based Optical Fiber Biosensor for Rapid Detection of Salmonella typhimurium. Biosensors and Bioelectronics, 21, 1283-1290.
http://dx.doi.org/10.1016/j.bios.2005.05.017

[47]   Geng, T., Morgan, M.T. and Bhunia, A.K. (2004) Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor. Applied and Environmental Microbiology, 70, 6138-6146.
http://dx.doi.org/10.1128/AEM.70.10.6138-6146.2004

[48]   Liu, Y., Ye, J. and Li, Y. (2003) Rapid Detection of Escherichia coli O157:H7 Inoculated in Ground Beef, Chicken Carcass, and Lettuce Samples with an Immuno-magnetic Chemiluminescence Fiber-Optic Biosensor. Journal of Food Protection, 66, 512-517.

[49]   Marco, M.-P. and Barcelo, D. (1996) Environmental Applications of Analytical Biosensors. Measurement Science & Technology, 7, 1547-1562.
http://dx.doi.org/10.1088/0957-0233/7/11/002

[50]   Suleiman, A.A. and Guilbault, G.G. (1994) Recent Developments in Piezoelectric Immunosensors: A Review. Analyst, 119, 2279-2282.
http://dx.doi.org/10.1039/an9941902279

[51]   Si, S.-H., Li, X., Fung, Y.-S. and Zhu, D.-R. (2001) Rapid Detection of Salmonella enteritidis by Piezoelectric Immunosensor. Microchemical Journal, 68, 21-27.
http://dx.doi.org/10.1016/S0026-265X(00)00167-3

[52]   Pathirana, S.T., Barbaree, J., Chin, B.A., Hartell, M.G., Neely, W.C. and Vodyanoy, V. (2000) Rapid and Sensitive Biosensor for Salmonella. Biosensors and Bioelectronics, 15, 135-141.
http://dx.doi.org/10.1016/S0956-5663(00)00067-1

[53]   Koenig, B. and Graetzel, M. (1993) Detection of Viruses and Bacteria with Piezoelectric Immunosensors. Analytical Letters, 26, 1567-1585.
http://dx.doi.org/10.1080/00032719308021481

[54]   Plomer, M., Guilbault, G.G. and Hock, B. (1992) Development of a Piezoelectric Immunosensor for the Detection of Enterobacteria. Enzyme and Microbial Technology, 14, 230-235.
http://dx.doi.org/10.1016/0141-0229(92)90071-U

[55]   Prusak-Sochaczewski, E., Luong, J.H. and Guilbault, G.G. (1990) Development of a Piezoelectric Immunosensor for the Detection of Salmonella typhimurium. Enzyme and Microbial Technology, 12, 173-177.
http://dx.doi.org/10.1016/0141-0229(90)90034-N

[56]   Ben-Dov, I., Willner, I. and Zisman, E. (1997) Piezoelectric Immunosensors for Urine Specimens of Chlamydia trachomatis Employing Quartz Crystal Microbalance Microgravimetric Analyses. Analytical Chemistry, 69, 3506-3512.
http://dx.doi.org/10.1021/ac970216s

[57]   Neufeld, T., Schwartz-Mittelmann, A., Biran, D., Ron, E.Z. and Rishpon, J. (2003) Combined Phage Typing and Amperometric Detection of Released Enzymatic Activity for the Specific Identification and Quantification of Bacteria. Analytical Chemistry, 75, 580-585.
http://dx.doi.org/10.1021/ac026083e

[58]   Brooks, J.L., Mirhabibollahi, B. and Kroll, R.G. (1992) Experimental Enzyme-Linked Amperometric Immunosensors for the Detection of Salmonellas in Foods. Journal of Applied Bacteriology, 73, 189-196.
http://dx.doi.org/10.1111/j.1365-2672.1992.tb02977.x

[59]   Gehring, A.G., Crawford, C.G., Mazenko, R.S., Van Houten, L.J. and Brewster, J.D. (1996) Enzyme-Linked Immunomagnetic Electrochemical Detection of Salmonella typhimurium. Journal of Immunological Methods, 195, 15-25.
http://dx.doi.org/10.1016/0022-1759(96)00076-2

[60]   Gehring, A.G., Patterson, D.L. and Tu, S.I. (1998) Use of a Light-Addressable Potentiometric Sensor for the Detection of Escherichia coli O157:H7. Analytical Biochemistry, 258, 293-298.
http://dx.doi.org/10.1006/abio.1998.2597

[61]   Ercole, C., Del Gallo, M., Pantalone, M., Santucci, S., Mosiello, L., Laconi, C. and Lepidi, A. (2002) A Biosensor for Escherichia coli Based on a Potentiometric Alternating Biosensing (PAB) Transducer. Sensors and Actuators B: Chemical, 83, 48-52.
http://dx.doi.org/10.1016/S0925-4005(01)01027-9

[62]   Yang, L. (2008) Electrical Impedance Spectroscopy for Detection of Bacterial Cells in Suspensions Using Interdigitated Microelectrodes. Talanta, 74, 1621-1629.
http://dx.doi.org/10.1016/j.talanta.2007.10.018

[63]   Ghafar-Zadeh, E., Sawan, M. and Chodavarapu, V.P. (2010) Bacteria Growth Monitoring through a Differential CMOS Capacitive Sensor. IEEE Transactions on Biomedical Circuits and Systems, 4, 232-238.
http://dx.doi.org/10.1109/TBCAS.2010.2048430

[64]   Yao, L., Lamarche, P., Tawil, N., Khan, N., Aliakbar, A.M., Hassan, M.H., Chodavarapu, V.P. and Mandeville, R. (2011) CMOS Conductometric System for Growth Monitoring and Sensing of Bacteria. IEEE Transactions on Biomedical Circuits and Systems, 5, 223-230.
http://dx.doi.org/10.1109/TBCAS.2010.2089794

[65]   Limited, D.W.S. (1999) Introduction to Principles of Impedance.
www.dwscientific.co.uk

[66]   Owicki, J.C. and Parce, J.W. (1992) Biosensors Based on the Energy Metabolism of Living Cells: The Physical Chemistry and Cell Biology of Extracellular Acidification. Biosensors & Bioelectronics, 7, 255-272.
http://dx.doi.org/10.1016/0956-5663(92)87004-9

[67]   Bard, A.J. and Faulkner, L.R. (2001) Electrochemical Methods: Fundamentals and Applications. Wiley, New York.

[68]   Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K. and Wolf, B. (1997) Monitoring of Cellular Behaviour by Impedance Measurements on Interdigitated Electrode Structures. Biosensors and Bioelectronics, 12, 29- 41.
http://dx.doi.org/10.1016/0956-5663(96)89087-7

[69]   Tahir, Z.M., Alocilja, E.C. and Grooms, D.L. (2005) Polyaniline Synthesis and Its Biosensor Application. Biosensors and Bioelectronics, 20, 1690-1695.
http://dx.doi.org/10.1016/j.bios.2004.08.008

[70]   Ruan, C., Yang, L. and Li, Y. (2002) Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy. Analytical Chemistry, 74, 4814-4820.
http://dx.doi.org/10.1021/ac025647b

[71]   Yang, L., Li, Y. and Erf, G.F. (2004) Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7. Analytical Chemistry, 76, 1107-1113.
http://dx.doi.org/10.1021/ac0352575

[72]   Park, I.-S., Kim, W.-Y. and Kim, N. (2000) Operational Characteristics of an Antibody-Immobilized QCM System Detecting Salmonella spp. Biosensors and Bioelectronics, 15, 167-172.
http://dx.doi.org/10.1016/S0956-5663(00)00053-1

[73]   Koubova, V., Brynda, E., Karasova, L., Skvor, J., Homola, J., Dostalek, J., Tobiska, P. and Rosicky, J. (2001) Detection of Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. Sensors and Actuators B: Chemical, 74, 100-105.
http://dx.doi.org/10.1016/S0925-4005(00)00717-6

[74]   Meeusen, C.A., Alocilja, E.C. and Osburn, W.N. (2005) Detection of E. coli O157:H7 Using a Miniaturized Surface Plasmon Resonance Biosensor. Transactions of the ASAE, 48, 2409-2416.
http://dx.doi.org/10.13031/2013.20067

[75]   Radke, S.M. and Alocilja, E.C. (2005) A High Density Mi-croelectrode Array Biosensor for Detection of E. coli O157:H7. Biosensors and Bioelectronics, 20, 1662-1667.
http://dx.doi.org/10.1016/j.bios.2004.07.021

[76]   Boehm, D.A., Gottlieb, P.A. and Hua, S.Z. (2007) On-Chip Micro-fluidic Biosensor for Bacterial Detection and Identification. Sensors and Actuators B: Chemical, 126, 508-514.
http://dx.doi.org/10.1016/j.snb.2007.03.043

[77]   Shabani, A., Marquette, C.A., Mandeville, R. and Lawrence, M.F. (2013) Carbon Microarrays for the Direct Impedimetric Detection of Bacillus anthracis Using Gamma Phages as Probes. Analyst, 138, 1434-1440.
http://dx.doi.org/10.1039/c3an36830k

[78]   Shabani, A., Marquette, C.A., Mandeville, R. and Lawrence, M.F. (2013) Magnetically-Assisted Impedimetric Detection of Bacteria Using Phage-Modified Carbon Microarrays. Talanta, 116, 1047-1053.
http://dx.doi.org/10.1016/j.talanta.2013.07.078

 
 
Top