Back
 JBiSE  Vol.8 No.2 , February 2015
Modern Probe-Assisted Methods for the Specific Detection of Bacteria
Abstract: This review intends to present an overview of methods currently under development for the specific and sensitive detection of pathogenic bacteria that exist in a variety of human environments. Bacteria continue to be a major health threat in general, and much effort is being deployed to counteract this problem. In a first instance, current and efficient techniques in use for the detection of bacteria are described. In a second instance, this review serves to compare the more conventional techniques to emerging technologies for the direct (non-labelled) detection of bacteria (referred to as “biosensors”). These approaches are mainly optical, piezoelectric, and electro-chemical in nature. They are cost-effective, quite sensitive, and potentially portable for rapid on-site/real-time detection, and rapid prevention. These devices are comprised of specific chemical/ biochemical probes immobilized onto physical transducers. This work also presents comparisons between the efficiencies (assay time and sensitivity) of various techniques being employed.
Cite this paper: Shabani, A. , Marquette, C. , Mandeville, R. and Lawrence, M. (2015) Modern Probe-Assisted Methods for the Specific Detection of Bacteria. Journal of Biomedical Science and Engineering, 8, 104-121. doi: 10.4236/jbise.2015.82011.
References

[1]   Rowe, P.C., Orrbine, E., Lior, H., Wells, G.A., Yetisir, E., Clulow, M. and McLaine, P.N. (1998) Risk of Hemolytic Uremic Syndrome after Sporadic Escherichia coli O157:H7 Infection: Results of a Canadian Collaborative Study. The Journal of Pediatrics, 132, 777-782.
http://dx.doi.org/10.1016/S0022-3476(98)70303-8

[2]   Deisingh, A.K. and Thompson, M. (2002) Detection of Infectious and Toxigenic Bacteria. The Analyst, 127, 567-581.
http://dx.doi.org/10.1039/b109895k

[3]   Shangkuan, Y.-H. and Lin, H.-C. (1998) Application of Random Amplified Polymorphic DNA Analysis to Differentiate Strains of Salmonella typhi and Other Salmonella species. Journal of Applied Microbiology, 85, 693-702.
http://dx.doi.org/10.1111/j.1365-2672.1998.00582.x

[4]   Ivnitski, D., Abdel-Hamid, I., Atanasov, P. and Wilkins, E. (1999) Biosensors for Detection of Pathogenic Bacteria. Biosensors and Bioelectronics, 14, 599-624.
http://dx.doi.org/10.1016/S0956-5663(99)00039-1

[5]   https://microbiologybytes.wordpress.com

[6]   Rossi, T.M. and Warner, I.M. (1985) Pattern Recognition of Two-Dimensional Fluorescence Data Using Cross-Correlation Analysis. Applied Spectroscopy, 39, 949-959.
http://dx.doi.org/10.1366/0003702854249501

[7]   Beverly, M.B., Basile, F., Voorhees, K.J. and Hadfield, T.L. (1996) A Rapid Approach for the Detection of Dipicolinic Acid in Bacterial Spores Using Pyrolysis/Mass Spectrometry. Rapid Communications in Mass Spectrometry, 10, 455- 458.
http://dx.doi.org/10.1002/(SICI)1097-0231(19960315)10:4<455::AID-RCM500>3.0.CO;2-Y

[8]   Fox, A., Black, G.E., Fox, K. and Rostovtseva, S. (1993) Determination of Carbohydrate Profiles of Bacillus anthracis and Bacillus cereus Including Identification of O-Methyl Methylpentoses by Using Gas Chromatography-Mass Spectrometry. Journal of Clinical Microbiology, 31, 887-894.

[9]   Goodacre, R., Shann, B., Gilbert, R.J., Timmins, E.M., McGovern, A.C., Alsberg, B.K., Kell, D.B. and Logan, N.A. (2000) Detection of the Dipicolinic Acid Biomarker in Bacillus Spores Using Curie-Point Pyrolysis Mass Spectrometry and Fourier Transform Infrared Spectroscopy. Analytical Chemistry, 72, 119-127.
http://dx.doi.org/10.1021/ac990661i

[10]   Quinlan, J.J. and Foegeding, P.M. (1997) Monoclonal Antibodies for Use in Detection of Bacillus and Clostridium Spores. Applied and Environmental Microbiology, 63, 482-487.

[11]   Zhou, B., Wirsching, P. and Janda, K.D. (2002) Human Antibodies against Spores of the Genus Bacillus: A Model Study for Detection of and Protection against Anthrax and the Bioterrorist Threat. Proceedings of the National Academy of Sciences of the United States of America, 99, 5241-5246.
http://dx.doi.org/10.1073/pnas.082121599

[12]   Fergenson, D.P., Pitesky, M.E., Tobias, H.J., Steele, P.T., Czerwieniec, G.A., Russell, S.C., Lebrilla, C.B., Horn, J.M., Coffee, K.R., Srivastava, A., Pillai, S.P., Shih, M.T.P., Hall, H.L., Ramponi, A.J., Chang, J.T., Langlois, R.G., Estacio, P.L., Hadley, R.T., Frank, M. and Gard, E.E. (2004) Reagentless Detection and Classification of Individual Bioaerosol Particles in Seconds. Analytical Chemistry, 76, 373-378.
http://dx.doi.org/10.1021/ac034467e

[13]   Huang, J., Li, Y., Slavik, M.F., Tao, Y. and Huff, G.R. (1999) Identification and Enumeration of Salmonella on Sample Slides of Poultry Carcass Wash-Water Using Image Analysis with Fluorescent Microscopy. Transactions of the ASAE, 42, 267-273.
http://dx.doi.org/10.13031/2013.13204

[14]   Prosser, J.I., Killham, K., Glover, L.A. and Rattray, E.A. (1996) Luminescence-Based Systems for Detection of Bacteria in the Environment. Critical Reviews in Biotechnology, 16, 157-183.
http://dx.doi.org/10.3109/07388559609147420

[15]   Dickinson, B. (2002) Introduction to Flow Cytometry: A Learning Guide. Becton, Dickinson and Company, Franklin Lakes.

[16]   Boye, E. and Loebner-Olesen, A. (1991) Bacterial Growth Control Studied by Flow Cytometry. Research in Microbiology, 142, 131-135.
http://dx.doi.org/10.1016/0923-2508(91)90020-B

[17]   Wu, L., Luan, T., Yang, X., Wang, S., Zheng, Y., Huang, T., Zhu, S. and Yan, X. (2014) Trace Detection of Specific Viable Bacteria Using Tetracysteine-Tagged Bacteriophages. Analytical Chemistry, 86, 907-912.
http://dx.doi.org/10.1021/ac403572z

[18]   Thevenot, D.R., Toth, K., Durst, R.A. and Wilson, G.S. (1999) Electrochemical Biosensors: Recommended Definitions and Classification. Pure and Applied Chemistry, 71, 2333-2348.
http://dx.doi.org/10.1351/pac199971122333

[19]   Turner, A.P.F., Wilson, G. and Kaube, I., Eds. (1987) Biosensors: Fundamentals and Applications. Oxford University Press, Oxford.

[20]   Banica, F.G. (2012) Chemical Sensors and Biosensors: Fundamentals and Applications. John Wiley & Sons, Chichester.
http://dx.doi.org/10.1002/9781118354162

[21]   Cavalcanti, A., Shirinzadeh, B., Freitas Jr., R.A. and Hogg, T. (2008) Nanorobot Architecture for Medical Target Identification. Nanotechnology IOP, 19, Article ID: 015103.
http://dx.doi.org/10.1088/0957-4484/19/01/015103

[22]   Cavalcanti, A., Shirinzadeh, B., Zhang, M.J. and Kretly, L.C. (2008) Nanorobot Hardware Architecture for Medical Defense. Sensors, 8, 2932-2958.
http://dx.doi.org/10.3390/s8052932

[23]   Sethi, R.S. (1994) Transducer Aspects of Biosensors. Biosensors & Bioelectronics, 9, 243-263.
http://dx.doi.org/10.1016/0956-5663(94)80127-4

[24]   Barak, O., Treat James, R. and James William, D. (2005) Antimicrobial Peptides: Effectors of Innate Immunity in the Skin. Advances in Dermatology, 21, 357-374.
http://dx.doi.org/10.1016/j.yadr.2005.07.001

[25]   Williams, D.D., Benedek, O. and Turnbough Jr., C.L. (2003) Species-Specific Peptide Ligands for the Detection of Bacillus anthracis Spores. Applied and Environmental Microbiology, 69, 6288-6293.
http://dx.doi.org/10.1128/AEM.69.10.6288-6293.2003

[26]   Lee, T.C., Yusoff, K., Nathan, S. and Tan, W.S. (2006) Detection of Virulent Newcastle Disease Virus Using a Phagecapturing Dot Blot Assay. Journal of Virological Methods, 136, 224-229.
http://dx.doi.org/10.1016/j.jviromet.2006.05.017

[27]   Shabani, A., Mak, A.W.H., Gerges, I., Polychronakos, C. and Lawrence, M.F. (2006) DNA Immobilization onto Electrochemically Functionalized Si(100) Surfaces. Talanta, 70, 615-623.
http://dx.doi.org/10.1016/j.talanta.2006.01.033

[28]   Lenigk, R., Carles, M., Ip, N.Y. and Sucher, N.J. (2001) Surface Characterization of a Silicon-Chip-Based DNA Microarray. Langmuir, 17, 2497-2501.
http://dx.doi.org/10.1021/la001355z

[29]   Lee, J.F., Stovall, G.M. and Ellington, A.D. (2006) Aptamer Therapeutics Advance. Current Opinion in Chemical Biology, 10, 282-289.

[30]   http://dx.doi.org/10.1016/j.cbpa.2006.03.015

[31]   Awais, R., Fukudomi, H., Miyanaga, K., Unno, H. and Tanji, Y. (2006) A Recombinant Bacteriophage-Based Assay for the Discriminative Detection of Culturable and Viable but Nonculturable Escherichia coli O157:H7. Biotechnology Progress, 22, 853-859.
http://dx.doi.org/10.1021/bp060020q

[32]   Olsen, E.V., Sorokulova, I.B., Petrenko, V.A., Chen, I.H., Barbaree, J.M. and Vodyanoy, V.J. (2006) Affinity-Selected Filamentous Bacteriophage as a Probe for Acoustic Wave Biodetectors of Salmonella typhimurium. Biosensors and Bioelectronics, 21, 1434-1442.
http://dx.doi.org/10.1016/j.bios.2005.06.004

[33]   Shabani, A., Zourob, M., Allain, B., Marquette, C.A., Lawrence, M.F. and Mandeville, R. (2008) Bacteriophage-Modified Microarrays for the Direct Impedimetric Detection of Bacteria. Analytical Chemistry, 80, 9475-9482.
http://dx.doi.org/10.1021/ac801607w

[34]   Kutter, E. and Sulakvelidze, A. (2004) Bacteriophages: Biology and Applications. CRC Press, Washington DC.
http://dx.doi.org/10.1201/9780203491751

[35]   Birge, E.A. (2006) Bacterial and Bacteriophage Genetics. Fifth Edition, Springer Science, New York.

[36]   Ivnitski, D., Abdel-Hamid, I., Atanasov, P., Wilkins, E. and Stricker, S. (2000) Application of Electrochemical Biosensors for Detection of Food Pathogenic Bacteria. Electroanalysis, 12, 317-325.
http://dx.doi.org/10.1002/(SICI)1521-4109(20000301)12:5<317::AID-ELAN317>3.0.CO;2-A

[37]   Swenson, F.J. (1993) Development and Evaluation of Optical Sensors for the Detection of Bacteria. Sensors and Actuators B: Chemical, 11, 315-321.
http://dx.doi.org/10.1016/0925-4005(93)85270-K

[38]   Schneider, B.H., Edwards, J.G. and Hartman, N.F. (1997) Hartman Interferometer: Versatile Integrated Optic Sensor for Label-Free, Real-Time Quantification of Nucleic Acids, Proteins, and Pathogens. Clinical Chemistry, 43, 1757- 1763.

[39]   Raether, H. (1988) Surface Plasmons on Smooth and Rough Surfaces and on Gratings. Springer Verlag, Berlin.

[40]   Taylor, A.D., Yu, Q., Chen, S., Homola, J. and Jiang, S. (2005) Comparison of E. coli O157:H7 Preparation Methods Used for Detection with Surface Plasmon Resonance Sensor. Sensors and Actuators B: Chemical, 107, 202-208.
http://dx.doi.org/10.1016/j.snb.2004.11.097

[41]   Fratamico, P.M., Strobaugh, T.P., Medina, M.B. and Gehring, A.G. (1998) Detection of Escherichia coli O157:H7 Using a Surface Plasmon Resonance Biosensor. Biotechnology Techniques, 12, 571-576.
http://dx.doi.org/10.1023/A:1008872002336

[42]   Tawil, N., Sacher, E., Mandeville, R. and Meunier, M. (2012) Surface Plasmon Resonance Detection of E. coli and Methicillin-Resistant S. aureus Using Bacteriophages. Biosensors and Bioelectronics, 37, 24-29.
http://dx.doi.org/10.1016/j.bios.2012.04.048

[43]   Tawil, N., Mouawad, F., Levesque, S., Sacher, E., Mandeville, R. and Meunier, M. (2013) The Differential Detection of Methicillin-Resistant, Methicillin-Susceptible and Borderline Oxacillin-Resistant Staphylococcus aureus by Surface Plasmon Resonance. Biosensors and Bioelectronics, 49, 334-340.
http://dx.doi.org/10.1016/j.bios.2013.05.031

[44]   Tawil, N., Sacher, E., Mandeville, R. and Meunier, M. (2013) Strategies for the Immobilization of Bacteriophages on Gold Surfaces Monitored by Surface Plasmon Resonance and Surface Morphology. The Journal of Physical Chemistry C, 117, 6686-6691.
http://dx.doi.org/10.1021/jp400565m

[45]   Taitt, C.R., Anderson, G.P. and Ligler, F.S. (2005) Evanescent Wave Fluorescence Biosensors. Biosensors and Bioelectronics, 20, 2470-2487.
http://dx.doi.org/10.1016/j.bios.2004.10.026

[46]   Ko, S. and Grant, S.A. (2006) A Novel FRET-Based Optical Fiber Biosensor for Rapid Detection of Salmonella typhimurium. Biosensors and Bioelectronics, 21, 1283-1290.
http://dx.doi.org/10.1016/j.bios.2005.05.017

[47]   Geng, T., Morgan, M.T. and Bhunia, A.K. (2004) Detection of Low Levels of Listeria monocytogenes Cells by Using a Fiber-Optic Immunosensor. Applied and Environmental Microbiology, 70, 6138-6146.
http://dx.doi.org/10.1128/AEM.70.10.6138-6146.2004

[48]   Liu, Y., Ye, J. and Li, Y. (2003) Rapid Detection of Escherichia coli O157:H7 Inoculated in Ground Beef, Chicken Carcass, and Lettuce Samples with an Immuno-magnetic Chemiluminescence Fiber-Optic Biosensor. Journal of Food Protection, 66, 512-517.

[49]   Marco, M.-P. and Barcelo, D. (1996) Environmental Applications of Analytical Biosensors. Measurement Science & Technology, 7, 1547-1562.
http://dx.doi.org/10.1088/0957-0233/7/11/002

[50]   Suleiman, A.A. and Guilbault, G.G. (1994) Recent Developments in Piezoelectric Immunosensors: A Review. Analyst, 119, 2279-2282.
http://dx.doi.org/10.1039/an9941902279

[51]   Si, S.-H., Li, X., Fung, Y.-S. and Zhu, D.-R. (2001) Rapid Detection of Salmonella enteritidis by Piezoelectric Immunosensor. Microchemical Journal, 68, 21-27.
http://dx.doi.org/10.1016/S0026-265X(00)00167-3

[52]   Pathirana, S.T., Barbaree, J., Chin, B.A., Hartell, M.G., Neely, W.C. and Vodyanoy, V. (2000) Rapid and Sensitive Biosensor for Salmonella. Biosensors and Bioelectronics, 15, 135-141.
http://dx.doi.org/10.1016/S0956-5663(00)00067-1

[53]   Koenig, B. and Graetzel, M. (1993) Detection of Viruses and Bacteria with Piezoelectric Immunosensors. Analytical Letters, 26, 1567-1585.
http://dx.doi.org/10.1080/00032719308021481

[54]   Plomer, M., Guilbault, G.G. and Hock, B. (1992) Development of a Piezoelectric Immunosensor for the Detection of Enterobacteria. Enzyme and Microbial Technology, 14, 230-235.
http://dx.doi.org/10.1016/0141-0229(92)90071-U

[55]   Prusak-Sochaczewski, E., Luong, J.H. and Guilbault, G.G. (1990) Development of a Piezoelectric Immunosensor for the Detection of Salmonella typhimurium. Enzyme and Microbial Technology, 12, 173-177.
http://dx.doi.org/10.1016/0141-0229(90)90034-N

[56]   Ben-Dov, I., Willner, I. and Zisman, E. (1997) Piezoelectric Immunosensors for Urine Specimens of Chlamydia trachomatis Employing Quartz Crystal Microbalance Microgravimetric Analyses. Analytical Chemistry, 69, 3506-3512.
http://dx.doi.org/10.1021/ac970216s

[57]   Neufeld, T., Schwartz-Mittelmann, A., Biran, D., Ron, E.Z. and Rishpon, J. (2003) Combined Phage Typing and Amperometric Detection of Released Enzymatic Activity for the Specific Identification and Quantification of Bacteria. Analytical Chemistry, 75, 580-585.
http://dx.doi.org/10.1021/ac026083e

[58]   Brooks, J.L., Mirhabibollahi, B. and Kroll, R.G. (1992) Experimental Enzyme-Linked Amperometric Immunosensors for the Detection of Salmonellas in Foods. Journal of Applied Bacteriology, 73, 189-196.
http://dx.doi.org/10.1111/j.1365-2672.1992.tb02977.x

[59]   Gehring, A.G., Crawford, C.G., Mazenko, R.S., Van Houten, L.J. and Brewster, J.D. (1996) Enzyme-Linked Immunomagnetic Electrochemical Detection of Salmonella typhimurium. Journal of Immunological Methods, 195, 15-25.
http://dx.doi.org/10.1016/0022-1759(96)00076-2

[60]   Gehring, A.G., Patterson, D.L. and Tu, S.I. (1998) Use of a Light-Addressable Potentiometric Sensor for the Detection of Escherichia coli O157:H7. Analytical Biochemistry, 258, 293-298.
http://dx.doi.org/10.1006/abio.1998.2597

[61]   Ercole, C., Del Gallo, M., Pantalone, M., Santucci, S., Mosiello, L., Laconi, C. and Lepidi, A. (2002) A Biosensor for Escherichia coli Based on a Potentiometric Alternating Biosensing (PAB) Transducer. Sensors and Actuators B: Chemical, 83, 48-52.
http://dx.doi.org/10.1016/S0925-4005(01)01027-9

[62]   Yang, L. (2008) Electrical Impedance Spectroscopy for Detection of Bacterial Cells in Suspensions Using Interdigitated Microelectrodes. Talanta, 74, 1621-1629.
http://dx.doi.org/10.1016/j.talanta.2007.10.018

[63]   Ghafar-Zadeh, E., Sawan, M. and Chodavarapu, V.P. (2010) Bacteria Growth Monitoring through a Differential CMOS Capacitive Sensor. IEEE Transactions on Biomedical Circuits and Systems, 4, 232-238.
http://dx.doi.org/10.1109/TBCAS.2010.2048430

[64]   Yao, L., Lamarche, P., Tawil, N., Khan, N., Aliakbar, A.M., Hassan, M.H., Chodavarapu, V.P. and Mandeville, R. (2011) CMOS Conductometric System for Growth Monitoring and Sensing of Bacteria. IEEE Transactions on Biomedical Circuits and Systems, 5, 223-230.
http://dx.doi.org/10.1109/TBCAS.2010.2089794

[65]   Limited, D.W.S. (1999) Introduction to Principles of Impedance.
www.dwscientific.co.uk

[66]   Owicki, J.C. and Parce, J.W. (1992) Biosensors Based on the Energy Metabolism of Living Cells: The Physical Chemistry and Cell Biology of Extracellular Acidification. Biosensors & Bioelectronics, 7, 255-272.
http://dx.doi.org/10.1016/0956-5663(92)87004-9

[67]   Bard, A.J. and Faulkner, L.R. (2001) Electrochemical Methods: Fundamentals and Applications. Wiley, New York.

[68]   Ehret, R., Baumann, W., Brischwein, M., Schwinde, A., Stegbauer, K. and Wolf, B. (1997) Monitoring of Cellular Behaviour by Impedance Measurements on Interdigitated Electrode Structures. Biosensors and Bioelectronics, 12, 29- 41.
http://dx.doi.org/10.1016/0956-5663(96)89087-7

[69]   Tahir, Z.M., Alocilja, E.C. and Grooms, D.L. (2005) Polyaniline Synthesis and Its Biosensor Application. Biosensors and Bioelectronics, 20, 1690-1695.
http://dx.doi.org/10.1016/j.bios.2004.08.008

[70]   Ruan, C., Yang, L. and Li, Y. (2002) Immunobiosensor Chips for Detection of Escherichia coli O157:H7 Using Electrochemical Impedance Spectroscopy. Analytical Chemistry, 74, 4814-4820.
http://dx.doi.org/10.1021/ac025647b

[71]   Yang, L., Li, Y. and Erf, G.F. (2004) Interdigitated Array Microelectrode-Based Electrochemical Impedance Immunosensor for Detection of Escherichia coli O157:H7. Analytical Chemistry, 76, 1107-1113.
http://dx.doi.org/10.1021/ac0352575

[72]   Park, I.-S., Kim, W.-Y. and Kim, N. (2000) Operational Characteristics of an Antibody-Immobilized QCM System Detecting Salmonella spp. Biosensors and Bioelectronics, 15, 167-172.
http://dx.doi.org/10.1016/S0956-5663(00)00053-1

[73]   Koubova, V., Brynda, E., Karasova, L., Skvor, J., Homola, J., Dostalek, J., Tobiska, P. and Rosicky, J. (2001) Detection of Foodborne Pathogens Using Surface Plasmon Resonance Biosensors. Sensors and Actuators B: Chemical, 74, 100-105.
http://dx.doi.org/10.1016/S0925-4005(00)00717-6

[74]   Meeusen, C.A., Alocilja, E.C. and Osburn, W.N. (2005) Detection of E. coli O157:H7 Using a Miniaturized Surface Plasmon Resonance Biosensor. Transactions of the ASAE, 48, 2409-2416.
http://dx.doi.org/10.13031/2013.20067

[75]   Radke, S.M. and Alocilja, E.C. (2005) A High Density Mi-croelectrode Array Biosensor for Detection of E. coli O157:H7. Biosensors and Bioelectronics, 20, 1662-1667.
http://dx.doi.org/10.1016/j.bios.2004.07.021

[76]   Boehm, D.A., Gottlieb, P.A. and Hua, S.Z. (2007) On-Chip Micro-fluidic Biosensor for Bacterial Detection and Identification. Sensors and Actuators B: Chemical, 126, 508-514.
http://dx.doi.org/10.1016/j.snb.2007.03.043

[77]   Shabani, A., Marquette, C.A., Mandeville, R. and Lawrence, M.F. (2013) Carbon Microarrays for the Direct Impedimetric Detection of Bacillus anthracis Using Gamma Phages as Probes. Analyst, 138, 1434-1440.
http://dx.doi.org/10.1039/c3an36830k

[78]   Shabani, A., Marquette, C.A., Mandeville, R. and Lawrence, M.F. (2013) Magnetically-Assisted Impedimetric Detection of Bacteria Using Phage-Modified Carbon Microarrays. Talanta, 116, 1047-1053.
http://dx.doi.org/10.1016/j.talanta.2013.07.078

 
 
Top