AiM  Vol.5 No.2 , February 2015
First Evidence of Fungal Strains Isolated and Identified from Naphtha Storage Tanks and Transporting Pipelines in Venezuelan Oil Facilities
Abstract: Biocorrosion, as well as the biodeterioration of crude oil and its derivatives, is one of the major environmental, operational and economic problems in the Venezuelan oil industry. Fungal contaminants are able to produce large quantities of biomass and synthesize peroxides and organic acids, causing severe damage on metal surfaces and promoting the contamination and biodeterioration of fuels. No evidences regarding fungal strains have been reported to be associated to petroleum naphtha, widely used as a diluent of extra heavy crude oil (EHCO) in the exploitation processes of the Orinoco Oil Belt, the biggest proven reserve of EHCO worldwide. The aims of this paper were to isolate and identify fungal strains from the naphtha storage tank and the naphtha distribution network from an oil field operator in Venezuela. The results showed the isolation of four different fungal strains. The molecular identification by 28S rRNA sequencing and phylogenetic tree analysis allowed us to identify the presence of: 1) a new uncultured Ascomycota fungus species BM-103, with high identity to novel hyphomycetes Noosia banksiae and Sporidesmium tengii, in the naphtha storage tank; 2) two yeasts, Rhodotorula mucilaginosa BM-104 (Phylum Basidiomycota) and Wickerhamia sp. BM-105 (Phylum Ascomycota), in a highly damaged naphtha pipeline branch and; 3) Cladosporium cladosporioides BM-102 (Phylum Ascomycota) in a cluster oil well. DNA fingerprinting analysis using ERIC-PCR primers pairs also allowed us to detect the presence of R. mucilaginosa BM-104 right in the access of the studied naphtha system. Interestingly, R. mucilaginosa and C. cladosporioides were previously reported as predominant fungal contaminants of diesel and jet fuel and of kerosene and fuel storage systems, respectively. This paper represents the first evidence of fungal strains isolated and identified from the naphtha systems in the Venezuelan oil industry. The results obtained are discussed.
Cite this paper: Naranjo, L. , Pernía, B. , Inojosa, Y. , Rojas, D. , D’Anna, L. , González, M. and Sisto, Á. (2015) First Evidence of Fungal Strains Isolated and Identified from Naphtha Storage Tanks and Transporting Pipelines in Venezuelan Oil Facilities. Advances in Microbiology, 5, 143-154. doi: 10.4236/aim.2015.52014.

[1]   Beech, I. and Gaylarde, C. (1999) Recent Advances in the Study of Biocorrosion: An Overview. Revista de Microbiología, 30, 177-190.

[2]   Lugauskas, A., Prosycevas, I., Ramanauskas, R., Griguceviciene, A., Selskiene, A. and Pakstas, V. (2009) The Influence of Micromycetes on the Corrosion Behaviour of Metals (Steel, Al) under Conditions of the Environment Polluted with Organic Substances. Material Science, 15, 224-235.

[3]   Muthukumar, N., Rajasekar, A., Ponmarriappan, S., Mohanan, S., Maruthamuthu, S., Muralidharan, S., Subramanian, P., Palaniswamy, N. and Raghavan, M. (2003) Microbiologically Influenced Corrosion in Petroleum Product Pipelines—A Review. Indian Journal of Experimental Biology, 41, 1012-1022.

[4]   Menezes, B., Boguslava, F., Beech, I., Gaylarde, C., Englert, G. and Muller, I. (2005) Degradation and Corrosive Activities of Fungi in a Diesel-Mild Steel-Aqueous System. World Journal of Microbiology and Biotechnology, 21, 135-142.

[5]   Smirnov, V., Belov, D., Sokolova, T., Kuzina, O. and Kartashov, V. (2008) Microbiological Corrosion of Aluminum Alloys. Applied Biochemistry and Microbiology, 44, 192-196.

[6]   Rajasekar, A., Balakrishnan, A., Maruthamuthu, S., Ting, Y.P. and Pattanathu, R. (2010) Characterization of Corrosive Bacterial Consortia Isolated from Petroleum-Product-Transporting Pipelines. Applied Microbiology and Biotechnology, 85, 1175-1188.

[7]   Yemashova, N.A., Murygina, V.P., Zhukov, D.V., Zakharyantz, A.A., Gladchenko, M.A., Appana, V. and Kalyuzhnyi, S.V. (2007) Biodeterioration of Crude Oil and Oil Derived Products: A Review. Reviews in Environmental Science and Bio/Technology, 6, 315-337.

[8]   Prestvic, R., Kjell, M., Knut, G. and Holmen, A. (2004) Compositional Analysis of Naphtha and Reformate. Catalytic Naphtha Reforming. CRC Press, USA.

[9]   Dong, J. (2003) Microbiological Deterioration and Degradation of Synthetic Polymeric Materials: Recent Research Advances. International Biodeterioration & Biodegradation, 52, 68-91.

[10]   Barnes, C.W., Szabo, L.J. and Bowersox, V.C. (2009) Identifying and Quantifying Phakopsora pachyrhizi Spores in Rain. Phytopathology, 99, 328-338.

[11]   Naranjo, L., Urbina, H., De Sisto, A. and León, V. (2007) Isolation of Autochthonous Non-White Rot Fungi with Potential for Enzymatic Upgrading of Venezuelan Extra-Heavy Crude Oil. Biocatalysis and Biotransformation, 25, 1-9.

[12]   Sambrook, J., Fritsch, E.F. and Maniatis, T. (1989) Molecular Cloning: A Laboratory Manual. 2nd Edition, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

[13]   Altschul, S., Madden, T.L., Alejandro, A.S., Zhang, J., Miller, W. and Lipman, D.J. (1997) A New Generation of Protein Database Search Programs. Nucleic Acids Research, 25, 3389-3402.

[14]   Crous, P.W., Gams, W., Stalpers, J.A., Robert, V. and Stegehuis, G. (2004) MycoBank: An Online Initiative to Launch Mycology into the 21st Century. Studies in Mycology, 50, 19-22.

[15]   Saitou, N. and Nei, M. (1987) The Neighbor-Joining Method: A New Method for Reconstructing Phylogenetic Trees. Molecular Biology and Evolution, 4, 406-425.

[16]   Tamura, K., Nei, M. and Kumar, S. (2004). Prospects for Inferring Very Large Phylogenies by Using the Neighbor-Joining Method. Proceedings of the National Academy of Sciences, 101, 11030-11035.

[17]   Tamura, K., Peterson, D., Stecher, G., Nei, M. and Kumar, S. (2011) MEGA5: Molecular Evolutionary Genetics Analysis Using Maximum Likelihood, Evolutionary Distance, and Maximum Parsimony Methods. Molecular Biology and Evolution, 28, 2731-2739.

[18]   Versalovic, J., Koeuth, T. and Lupski, J.R. (1991) Distribution of Repetitive DNA Sequences in Eubacteria and Application to Fingerprinting of Bacterial Genomes. Nucleic Acids Research, 19, 6823-6831.

[19]   Crous, P.W., Groenewald, J.Z., Shivas, R.G., Edwards, J., Seifert, K.A., Alfenas, A.C., Alfenas, R.F., Burgess, T.I., Carnegie, A.J., Hardy, G.E., Hiscock, N., Hüberli, D., Jung, T., Louis-Seize, G., Okada, G., Pereira, O.L., Stukely, M.J., Wang, W., White, G.P., Young, A.J., McTaggart, A.R., Pascoe, I.G., Porter, I.J. and Quaedvlieg, W. (2011) Fungal Planet Description Sheets: 69-91. Persoonia, 26, 108-156.

[20]   Wu, W.P. and Zhuang, W.Y. (2005) Sporidesmium, Endophragmiella and Related Genera from China. Fungal Diversity Research Series, 15, 1-351.

[21]   Limtong, S., Kaewwichian, R., Jindamorakot, S., Yongmanitchai, W. and Nakase, T. (2012) Candida wangnamkhiaoensis sp. nov., an Anamorphic Yeast Species in the Hyphopichia Clade Isolated in Thailand. Antonie van Leeuwenhoek, 102, 23-28.

[22]   Braun, U., Crous, P.W., Dugan, F., Groenewald, J.Z. and De Hoog, G.S. (2003) Phylogeny and Taxonomy of Cladosporium-Like Hyphomycetes, including Davidiella gen. nov., the Teleomorph of Cladosporium s. str. Mycological Progress, 2, 3-18.

[23]   Niemann, S., Dammann-Kalinowski, T., Nagel, A., Pühler, A. and Selbitschka, W. (1999) Genetic Basis of Enterobacterial Repetitive Intergenic Consensus (ERIC)-PCR Fingerprint Pattern in Sinorhizobium meliloti and Identification of S. meliloti Employing PCR Primers Derived from an ERIC-PCR Fragment. Archives of Microbiology, 172, 22-30.

[24]   León, V., De Sisto, A., Demey, J., Munoz, S., Ilzins, O., Urbina, H., Luis, L., Tusa, A. and Naranjo, L. (2006) Bioremediation of Crude Oil Contaminated Soils. Bacterial Population Assessment and Evolution in the Time. Proceedings of the 1st International Symposium on Environmental Biocatalysis, Córdoba, 23-26 April 2006.

[25]   León, Y., De Sisto, A., Inojosa, Y., Malaver, N. and Naranjo-Briceno, L. (2009) Identificación de biocatalizadores potenciales para la remediación de desechos petrolizados de la Faja Petrolífera del Orinoco. Revista de Estudios Transdisciplinarios (RET), 1, 12-25.

[26]   De Sisto, A., Naranjo-Briceno, L., Inojosa, Y., Rojas-Tortolero, D., Sena, L., González, M., Freites, M., Pernía, B., García, D. and Duque, Z. (2010) Caracterización bioquímica y molecular de bacterias planctónicas asociadas a sistemas de distribución de nafta y su implicación en procesos de biocorrosión en instalaciones petroleras. Proceedings of the 2nd Congreso de la Sociedad Latinoamericana de Biotecnología Ambiental y Algal (SOLABIAA), Cancún, 5-9 December 2010.

[27]   De Sisto, A., González, M., Inojosa, Y., Perdomo-Játem, T., Rojas Tortolero, D., Naranjo Briceno, L. and Freites, M. (2012) Aislamiento e identificación molecular de bacterias provenientes de suelo impactado con crudo y su potencial uso en Biodesulfuración. Proceedings of the 1st Congreso Venezolano de Ciencia Tecnología e Innovación, Caracas, 23-25 September 2012.

[28]   Naranjo-Briceno, L., De Sisto, A., García, D., Duque, Z., Freites, M., Rojas, D., Gonzalez, M., Sena, L., Inojosa, Y., Pernía, B., Fusella, E., Demey, J., Páez, R., Núnez, J. and Urbina, J. (2012) Metagenomics Tools and SEM Applied to Identify Corrosive Microorganims from Naphtha Transporting Pipelines of Venezuelan Oil Industries. Proceedings of BIT’s 3rd Annual World Congress of Petroleum Microbiology (WCP-2012), Xi’an, 25-27 April 2012.

[29]   Libkind, D., Gadanho, M., van Broock, M. and Sampaio, J.P. (2008) Studies on the Heterogeneity of the Carotenogenic Yeast Rhodotorula mucilaginosa from Patagonia, Argentina. Journal of Basic Microbiology, 48, 93-98.

[30]   Zobell, C.E. (1946) Action of Microorganism on Hydrocarbons. Bacteriological Reviews, 10, 1-49.

[31]   Bartha, R. and Atlas, R.M. (1977) The Microbiology of Aquatic Oil Spills. Advances in Applied Microbiology, 22, 225-226.

[32]   Walker, J.D. and Cooney, J.J. (1973) Pathway of n-Alkane Oxidation in Cladosporium resinae. The Journal of Bacteriology, 1152, 635-639.

[33]   Pernía, B., Demey, J.R., Inojosa, Y. and Naranjo, L. (2012) Biodiversidad y potencial hidrocarbonoclástico de hongos aislados de crudo y sus derivados: Un meta-análisis. Revista Latinoamericana de Biotecnología Ambiental y Algal, 3, 1-40.

[34]   Harrison, F.C. (1928) Rhodotorula mucilaginosa (Jorgensen). Transactions of the Royal Society of Canada, 22, 187-225.

[35]   Dabhole, M.P. and Joishy, K.N. (2003) Mild Steel Corrosion Reduction in Water by Uptake of Dissolved Oxygen by Rhodotorula mucilaginosa. Journal of Scientific & Industrial Research, 62, 683-689.