[1] Ryder, L.H. (1996) Quantum Field Theory. 2nd Edition, Cambridge University Press, Cambridge.
http://dx.doi.org/10.1017/CBO9780511813900
[2] Spanier, E. (1966) Algebraic Topology. Springer-Verlag, Berlin.
[3] Hatcher, A. (2002) Algebraic Topology. Cambridge University Press, Cambridge.
[4] Mermin, N. (1979) The Topological Theory of Defects in Ordered Media. Reviews of Modern Physics, 51, 591.
http://dx.doi.org/10.1103/RevModPhys.51.591
[5] Prodan, E. (2011) Disordered Topological Insulators: A Non-Commutative Geometry Perspective. Journal of Physics A: Mathematical and Theoretical, 44, Article ID: 113001.
http://dx.doi.org/10.1088/1751-8113/44/11/113001
[6] Hasan, M.Z. and Kane, C.L. (2010) Colloquium: Topological Insulators. Reviews of Modern Physics, 82, 3045-3067.
[7] Qi, X.L. and Zhang, S.C. (2011) Topological Insulators and Superconductors. Reviews of Modern Physics, 83, 1057.
http://dx.doi.org/10.1103/RevModPhys.83.1057
[8] Thouless, D.J., Kohmoto, M., Nightingale, M.P. and den Nijs, M. (1982) Quantized Hall Conductance in a Two- Dimensional Periodic Potential. Physical Review Letters, 49, 405.
http://dx.doi.org/10.1103/PhysRevLett.49.405
[9] Berry, M.V. (1984) Quantal Phase Factors Accompanying Adiabatic Changes. Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 392, 45-57.
[10] Nakahara, M. (1990) Geometry, Topology and Physics. Adam Hilger, Bristol.
[11] Birman, J.S. (1974) Braids, Links and Mapping Class Groups. Princeton University Press, Princeton.
[12] Laidlaw, M.G. and DeWitt, C.M. (1971) Feynman Functional Integrals for Systems of Indistinguishable Particles. Physical Review D, 3, 1375-1378.
http://dx.doi.org/10.1103/PhysRevD.3.1375
[13] Jacak, J., Józwiak, I. and Jacak, L. (2009) New Implementation of Composite Fermions in Terms of Subgroups of a Braid Group. Physics Letters A, 374, 346-350.
http://dx.doi.org/10.1016/j.physleta.2009.10.075
[14] Jacak, J., Józwiak, I., Jacak, L. and Wieczorek, K. (2010) Cyclotron Braid Group Structure for Composite Fermions. Journal of Physics: Condensed Matter, 22, Article ID: 355602.
http://dx.doi.org/10.1088/0953-8984/22/35/355602
[15] Pan, W., Störmer, H.L., Tsui, D.C., Pfeiffer, L.N., Baldwin, K.W. and West, K.W. (2003) Fractional Quantum Hall Effect of Composite Fermions. Physical Review Letters, 90, Article ID: 016801.
http://dx.doi.org/10.1103/PhysRevLett.90.016801
[16] Laughlin, R.B. (1983) Anomalous Quantum Hall Effect: An Incompressible Quantum Fluid with Fractionally Charged Excitations. Physical Review Letters, 50, 1395-1398.
http://dx.doi.org/10.1103/PhysRevLett.50.1395
[17] Haldane, F.D.M. (1983) Fractional Quantization of the Hall Effect: A Hierarchy of Incompressible Quantum Fluid States. Physical Review Letters, 51, 605-608.
http://dx.doi.org/10.1103/PhysRevLett.51.605
[18] Prange, R.E. and Girvin, S.M. (1990) The Quantum Hall Effect. Springer-Verlag, New York.
http://dx.doi.org/10.1007/978-1-4612-3350-3
[19] Laughlin, R.B. (1983) Quantized Motion of Three Two-Dimensional Electrons in a Strong Magnetic Field. Physical Review B, 27, 3383-3389.
http://dx.doi.org/10.1103/PhysRevB.27.3383
[20] Landau, L.D. and Lifshitz, E.M. (1972) Quantum Mechanics: Non-Relativistic Theory. Nauka, Moscow.
[21] Abrikosov, A.A., Gorkov, L.P. and Dzialoshinskii, I.E. (1975) Methods of Quantum Field Theory in Statistical Physics. Dover Publications Inc., Dover.
[22] Jain, J.K. (1989) Composite-Fermion Approach for the Fractional Quantum Hall Effect. Physical Review Letters, 63, 199-202.
http://dx.doi.org/10.1103/PhysRevLett.63.199
[23] Wilczek, F. (1990) Fractional Statistics and Anyon Superconductivity. World Scientific, Singapore City.
http://dx.doi.org/10.1142/0961
[24] Wu, Y.S. (1984) General Theory for Quantum Statistics in Two Dimensions. Physical Review Letters, 52, 2103-2106.
http://dx.doi.org/10.1103/PhysRevLett.52.2103
[25] Sudarshan, E.C.G., Imbo, T.D. and Govindarajan, T.R. (1988) Configuration Space Topology and Quantum Internal Symmetries. Physics Letters B, 213, 471-476.
http://dx.doi.org/10.1016/0370-2693(88)91294-4
[26] Avron, J.E., Osadchy, D. and Seiler, R. (2003) A Topological Look at the Quantum Hall Effect. Physics Today, 56, 38- 42.
[27] Qi, X.L. and Zhang, S.C. (2010) The Quantum Spin Hall Effect and Topological Insulators. arXiv:1001.1602v1 [cond-mat.mtrl-sci]
[28] Wang, Z., Qi, X.L. and Zhang, S.C. (2010) Topological Order Parameters for Interacting Topological Insulators. Physical Review Letters, 105, Article ID: 256803.
http://dx.doi.org/10.1103/PhysRevLett.105.256803
[29] Qi, X.L. (2011) Generic Wave-Function Description of Fractional Quantum Anomalous Hall States and Fractional Topological Insulators. Physical Review Letters, 107, Article ID: 126803.
http://dx.doi.org/10.1103/PhysRevLett.107.126803
[30] Haldane, F.D.M. (1988) Model of Quantum Hall Effect without Landau Levels: Condensed Matter Realization of the “Parity Anomaly”. Physical Review Letters, 61, 2015-2018.
http://dx.doi.org/10.1103/PhysRevLett.61.2015
[31] Kourtis, S., Venderbos, J.W.F. and Daghofer, M. (2012) Fractional Chern Insulator on a Triangular Lattice of Strongly Correlated t2g Electrons. Physical Review B, 86, Article ID: 235118.
http://dx.doi.org/10.1103/PhysRevB.86.235118
[32] Parameswaran, S.A., Roy, R. and Sondhi, S.L. (2013) Fractional Quantum Hall Physics in Topological Flat Bands. Comptes Rendus Physique, 14, 816-839.
http://dx.doi.org/10.1016/j.crhy.2013.04.003
[33] Sun, K., Gu, Z., Katsura, H. and Das Sarma, S. (2011) Nearly Flatbands with Nontrivial Topology. Physical Review Letters, 106, Article ID: 236803.
http://dx.doi.org/10.1103/PhysRevLett.106.236803
[34] Sheng, D.N., Gu, Z.C., Sun, K. and Sheng, L. (2011) Fractional Quantum Hall Effect in the Absence of Landau Levels. arXiv:1102.2658v1 [cond-mat.str-el]