JMP  Vol.6 No.2 , February 2015
Electronic Transport through a Graphene Nanoribbon Composed of Nanoribbons of Different Widths
Based on non-equilibrium Green’s function method combined with the density functional theory, we have studied the electronic properties of a graphene nanoribbon (GNR) which is composed of two GNRs with different widths. The results show that the electron transmission is greatly modulated by the applied bias. The current of the system displays negative differential resistance effect, which is attributed to the broadening of the transmission gap with the increase of the bias around the Fermi level.

Cite this paper
Liu, W. , Cheng, J. , Zhao, J. and Liu, D. (2015) Electronic Transport through a Graphene Nanoribbon Composed of Nanoribbons of Different Widths. Journal of Modern Physics, 6, 95-100. doi: 10.4236/jmp.2015.62012.
[1]   Liu, Y.L., Deng, X.Q. and Duan, X.C. (2013) Physica E, 52, 21-26.

[2]   Li, P.W., Yang, Z., Zhang, W.D. and Xiong, S.J. (2013) Journal of Molecular Structure, 1038, 1-7.

[3]   Han, M.Y., Ozyilmaz, B., Zhang, Y.B. and Kim, P. (2007) Physical Review Letters, 98, Article ID: 206805

[4]   Morozov, S.V., Novoselov, K.S. and Katsnelson, M.I. (2008) Physical Review Letters, 100, 016602-016604.

[5]   Geim, A.K. and Novoselov, K.S. (2007) Nature Materials, 6, 183-191.

[6]   Zhang, Y.Y., Hu, J.P., Bernevig, B.A. and Wang, X.R. (2008) Physical Review B, 78, 155413-155418.

[7]   Min, Y., Fang, H.J. and Dong, Z.C. (2013) Physica B, 430, 40-44.

[8]   Min, Y., Fang, H.J. and Zhong, C.G. (2013) International Journal of Modern Physics B, 27, 1350081-1350086.

[9]   Tang, G.P., Zhou, J.C., Zhang, Z.H., Deng, X.Q. and Fan, Z.Q. (2013) Carbon, 60, 94-101.

[10]   Li, X.F., Wang, L.L., Chen, K.Q. and Luo, Y. (2012) Journal of Physics: Condensed Matter, 24, 095801-095805.

[11]   Zou, W., Yu, Z.Z., Zhang, C.X., Zhong, J.X. and Sun, L.Z. (2012) Applied Physics Letters, 100, 103109-103111.

[12]   Naumis, G.G., Terrones, M., Terrones, H. and Gaggero-Sager, L.M. (2009) Applied Physics Letters, 95, 182104-182106.