Back
 CM  Vol.6 No.1 , March 2015
Evaluation of the Safety of Three Phenolic Compounds from Dipteryx alata Vogel with Antiophidian Potential
Abstract: Phenolic compounds from Dipteryx alata Vogel were assayed against the in vitro neurotoxic effect induced by Bothrops jararacussu (Bjssu) venom. Mutagenicity was assessed by the Ames test using Salmonella typhimurium strains TA98, TA97a, TA100, and TA102, in experiments with and without metabolic activation. Anti-bothropic activity was obtained by using mouse phrenic nerve-diaphragm (PND) preparation and myographic technique. Control experiments with physiological Tyrode solution were used for keeping the PND preparations alive (n = 4). Concentrations of phe-nolic compounds were as follow: protocatechuic and vanillic acids (200 μg/mL, n = 4), vanillin (50 μg/mL, n = 4). These compounds were used alone or pre-incubated with the venom (40 μg/mL), 30 min prior the addition to the organ bath (n = 4). Phenolic compounds significantly inhibited the neuromuscular blockade of Bjssu in the following order of potency: vanillic acid > protocatechuic = vanillin. Vanillic acid added 10 min after the Bjssu venom was also able to avoid the venomblockade evolution. The mutagenicity assay indicated that all phytochemicals were unable to in-crease the number of revertants, demonstrating the absence of mutagenic activity. This study demonstrated both the safety and therapeutical potential of the three phenolic compounds as novel complementary anti-bothropic agents.
Cite this paper: Yoshida, E. , Ferraz, M. , Tribuiani, N. , Silva Tavares, R. , Cogo, J. , dos Santos, M. , Franco, L. , Dal-Belo, C. , De Grandis, R. , Resende, F. , Varanda, E. , Puebla, P. , San-Feliciano, A. , Groppo, F. and Oshima-Franco, Y. (2015) Evaluation of the Safety of Three Phenolic Compounds from Dipteryx alata Vogel with Antiophidian Potential. Chinese Medicine, 6, 1-12. doi: 10.4236/cm.2015.61001.
References

[1]   Harborne, J.B. (1998) Phytochemical Methods. A Guide to Modern Techniques of Plant Analysys. 3rd Edition, Chapman & Hall, London.

[2]   Lee, S., Monnappa, A.K. and Mitchell, R.J. (2012) Biological Activities of Lignin Hydrolysate-Related Compounds. Biochemistry and Molecular Biology Reports, 45, 265-275.

[3]   Lorenzi, H. (1992) árvores Brasileiras: Manual de Identificação e Cultivo de Plantas Arbóreas Nativas do Brasil. Plantarum, Nova Odessa.

[4]   Puebla, P., Oshima-Franco, Y., Franco, L.M., Dos Santos, M.G., Da Silva, R.V., Rubem-Mauro, L. and Feliciano, A.S. (2010) Chemical Constituents of the Bark of Dipteryx alata Vogel, an Active Species against Bothrops jararacussu Venom. Molecules, 15, 8193-8204.
http://dx.doi.org/10.3390/molecules15118193

[5]   Kaga, V.E. and Tyurinov, Y.Y. (1998) Recycling and Redox Cycling of Phenolic Antioxidants. Annals of the New York Academy of Sciences, 854, 425-434.
http://dx.doi.org/10.1111/j.1749-6632.1998.tb09921.x

[6]   Zhou, Y.C. and Zheng, R.L. (1991) Phenolic Compounds and an Analog as Superoxide Anion Scavengers and Antioxidants. Biochemical Pharmacology, 42, 1177-1179.
http://dx.doi.org/10.1016/0006-2952(91)90251-Y

[7]   Kono, Y., Shibata, H., Kodama, Y. and Sawa, Y. (1995) The Suppression of the N-Nitrosating Reaction by Chlorogenic Acid. Biochemical Journal, 312, 947-953.

[8]   Brune, M., Rossander, L. and Hallberg, L. (1989) Iron Absorption and Phenolic Compounds: Importance of Different Phenolic Structures. European Journal of Clinical Nutrition, 43, 547-548.

[9]   Jorge, M.T., De Campos, F.P., Martins, F.P., Bousso, A., Cardoso, J.L., Ribeiro, L.A., Fan, H.W., França, F.O., Sano-Martins, I.S., Cardoso, D., Ide Fernandez, C., Fernandes, J.C., Aldred, V.L., Sandoval, M.P., Puorto, G., Theakston, R.D. and Warrell, D.A. (1997) Snake Bites by the Jararacuçu (Bothrops jararacussu): Clinicopathological Studies of 29 Proven Cases in São Paulo State, Brazil. Quarterly Journal of Medicine, 90, 323-334.
http://dx.doi.org/10.1093/qjmed/90.5.323

[10]   Ministério da Saúde (2001) Manual de Diagnóstico e tratamento de acidentes por animais peçonhentos. 2nd Edition, Ministério da Saúde, Brazil.

[11]   Warrell, D.A. (1992) The Global Problem of Snaked Bite: Its Prevention and Treatment. In: Gopalakrishnakone, P. and Tan, C.K., Eds., Recent Advances in Toxinology Research, National University of Singapore, Singapore, 121-153.

[12]   Dwivedi, R. (2014) Silver Nanoparticles Ecofriendly Green Synthesis by Using Two Medicinal Plant Extract. International Journal of Bio-Technology and Research, 3, 61-68.

[13]   Rodrigues-Simioni, L., Borgese, N. and Ceccarelli, B. (1983) The Effects of Bothrops jararacussu Venom and Its Components on Frog Nerve-Muscle Preparation. Neuroscience, 10, 475-489.
http://dx.doi.org/10.1016/0306-4522(83)90147-1

[14]   Ames, B.N., McCann, J. and Yamasaki, E. (1975) Methods for Detecting Carcinogens and Mutagens with the Salmonella/Mammalian-Microsome Mutagenicity Test. Mutation Research, 31, 347-364.
http://dx.doi.org/10.1016/0165-1161(75)90046-1

[15]   Maron, D.M. and Ames, B.N. (1983) Revised Methods for the Salmonella Mutagenicity Test. Mutation Research/Environmental Mutagenesis and Related Subjects, 113, 173-215.
http://dx.doi.org/10.1016/0165-1161(83)90010-9

[16]   Gatehouse, D., Haworth, S., Cebula, T., et al. (1994) Recommendations for the Performance of Bacterial Mutation Assays. Mutation Research/Environmental Mutagenesis and Related Subjects, 312, 217-233.
http://dx.doi.org/10.1016/0165-1161(94)90037-X

[17]   Santos, J.L., Varanda, E.A., Lima, L.M. and Chin, C.M. (2010) Mutagenicity of New Lead Compounds to Treat Sickle Cell Disease Symptoms in a Salmonella/Microsome Assay. International Journal of Molecular Sciences, 11, 779-788.
http://dx.doi.org/10.3390/ijms11020779

[18]   Esteves-Pedro, N.M., Borim, T., Nazato, V.S., Silva, M.G., Gerenutti, M., Oshima-Franco, Y., Lopes, P.S., dos Santos, M.G., Dal Belo, C.A., Primila Cardoso, C.R., Varanda, E.A. and Groppo, F.C. (2012) In Vitro and in Vivo Safety Evaluation of Dipteryx alata Vogel Extract. BioMed Central Complementary and Alternative Medicine, 12, 9.
http://dx.doi.org/10.1186/1472-6882-12-9

[19]   Cintra-Francischinelli, M., Silva, M.G., Andreo-Filho, N., Cintra, A.C.O., Leite, G.B., da Cruz Höfling, M.A., Rodrigues-Simioni, L. and Oshima-Franco, Y. (2008) Effects of Commonly Used Solubilizing Agents on a Model Nerve-Muscle Synapse. Latin American Journal of Pharmacy, 27, 721-726.

[20]   Bülbring, E. (1946) Observation on the Isolated Phrenic Nerve Diaphragm Preparation of the Rat. British Journal of Pharmacology, 1, 38-61.

[21]   Ferraz, M.C., Parrilha, L.A.C., Moraes, M.S.D., Amaral Filho, J., Cogo, C.J., dos Santos, M.G., Franco, L.M., Groppo, F.C., Puebla, P., Feliciano, A.S. and Oshima-Franco, Y. (2012) The Effect of Lupane Triterpenoids (Dipteryx alata Vogel) in the in Vitro Neuromuscular Blockade and Myotoxicity of Two Snake Venoms. Current Organic Chemistry, 16, 2717-2723.
http://dx.doi.org/10.2174/138527212804004481

[22]   OECD (1997) OECD Guideline for Testing of Chemicals, Bacterial Reverse Mutation Test.

[23]   Varella, S.D., Pozetti, G.L., Vilegas, W. and Varanda, E.A. (2004) Mutagenic Activity of Sweepings and Pigments from a Household-Wax Factory Assayed with Salmonella typhimurium. Food and Chemical Toxicology, 42, 2029-2035.
http://dx.doi.org/10.1016/j.fct.2004.07.019

[24]   Bernstein, L., Kaldor, J., McCann, J. and Pike, M.C. (1982) An Empirical Approach to the Statistical Analysis of Mutagenesis Data from the Salmonella Test. Mutation Research/Environmental Mutagenesis and Related Subjects, 97, 267-281.
http://dx.doi.org/10.1016/0165-1161(82)90026-7

[25]   El-Abbas, M.M., Csaplovics, E. and Deafalla, T.H. (2013) Remote Sensing and Spatial Analysis Based Study for Detecting Deforestation and the Associated Drivers. Proceedings of SPIE 8893, Earth Resources and Environmental Remote Sensing/GIS Applications IV, 88930O, Dresden, 24 October 2013.

[26]   US Environmental Protection Agency (EPA).
http://www.epa.gov/sustainability/basicinfo.htm

[27]   Santos, M.G., Lolis, S.F. and Dal Belo, C.A. (2006) Levantamentos etnobotanicos realizados em duas comunidades de remanescentes de negros da região do Jalapão, Estado do Tocantins. In: Pires, A.L., Cardoso, S. and Oliveira, R., Eds., Sociabilidade Negras. Comunidades Remanescentes, Escravidão e Cultura, Daliana, Belo Horizonte, 29-49.

[28]   Togashi, M. and Sgarbieri, V.C. (1995) Avaliação nutricional da proteína e do óleo de semente de baru (Dipteryx alata Vog.). Ciência e Tecnologia de Alimentos, 15, 66-69.

[29]   Nazato, V.S., Rubem-Mauro, L., Vieira, N.A.G., Rocha, D.S., Silva, M.G., Lopes, P.S., Dal-Belo, C.A., Cogo, J.C., Dos Santos, M.G., Da Cruz-Höfling, M.A. and Oshima-Franco, Y. (2010) In Vitro Antiophidian Properties of Dipteryx alata Vogel Bark Extracts. Molecules, 15, 5956-5970.
http://dx.doi.org/10.3390/molecules15095956

[30]   Sasaki, Y.F., Ohta, T., Imanishi, H., Watanabe, M., Matsumoto, K., Tomoko Kato, T. and Shirasu, Y. (1990) Suppressing Effects of Vanillin, Cinnamaldehyde, and Anisaldehyde on Chromosome Aberrations Induced by X-Rats in Mice. Mutation Research Letters, 243, 299-302.
http://dx.doi.org/10.1016/0165-7992(90)90146-B

[31]   Tsuda, H., Uehara, N., Iwahori, Y., Asamoto, M., Ligo, M., Nagao, M., Matsumoto, K., Ito, M. and Hirono, I. (1994) Chemopreventive Effects of β-Carotene, α-Tocopherol and Five Naturally Occurring Antioxidants on Initiation of Hepatocarcinogenesis by 2-Amino-3-methylimidazo[4,5-f] Qumoline in the Rat. Japanese Journal of Cancer Research, 85, 1214-1219.
http://dx.doi.org/10.1111/j.1349-7006.1994.tb02932.x

[32]   Raja, B. and Mol, S.D. (2010) The Protective Role of Vanillic Acid against Acetaminophen Induced Hepatotoxicity in Rats. Journal of Pharmacy Research, 3, 1480-1484.

[33]   Tai, A., Sawano, T., Yazama, F. and Ito, H. (2011) Evaluation of Antioxidant Activity of Vanillin by Using Multiple Antioxidant Assays. Biochimica et Biophysica Acta, 1810, 170-177. http://dx.doi.org/10.1016/j.bbagen.2010.11.004

[34]   Tai, A., Sawano, T. and Ito, H. (2012) Antioxidative Properties of Vanillic Acid Esters in Multiple Antioxidant Assays. Bioscience, Biotechnology, and Biochemistry, 76, 314-318.
http://dx.doi.org/10.1271/bbb.110700

[35]   Prince, P.S.M., Dhanasekar, K. and Rajakumar, S. (2011) Preventive Effects of Vanillic Acid on Lipids, Bax, Bcl-2 and Myocardial Infarct Size on Isoproterenol-Induced Myocardial Infracted Rats: A Biochemical and in vitro Study. Cardiovascular Toxicology, 11, 58-66.
http://dx.doi.org/10.1007/s12012-010-9098-3

[36]   Itoh, A., Isoda, K. and Kondoh, M., Masaya, K., Kiyohito, Y., Masakazu, K. and Makoto, T. (2009) Hepatoprotective Effect of Syringic Acid and Vanillic Acid on Concanavalin A-Induced Liver Injury. Biological and Pharmaceutical Bulletin, 32, 1215-1219.
http://dx.doi.org/10.1248/bpb.32.1215

[37]   Itoh, A., Isoda, K., Kondoh, M., Masaya, K., Akihiro, W., Kiyohito, Y., Masakazu, K. and Makoto, T. (2010) Hepatoprotective Effect of Syringic and Vanillic Acid on CCl4-Induced Liver Injury. Biological and Pharmaceutical Bulletin, 33, 983-987.
http://dx.doi.org/10.1248/bpb.33.983

[38]   Santosh Kumar, S., Priyadarsini, K.I. and Sainis, K.B. (2002) Free Radical Scavenging Activity of Vanillin and o-Vanillin Using 1,1-diphenyl-2-picrylhydrazyl (DPPH) Radical. Redox Report, 7, 35-40.
http://dx.doi.org/10.1179/135100002125000163

[39]   Lirdprapamongkol, K., Kramb, J.P., Suthiphongchai, T., Surarit, R., Srisomsap, C., Dannhardt, G. and Svasti, J. (2009) Vanillin Suppresses Metastatic Potential of Human Cancer Cells through PI3K Inhibition and Decreases Angiogenesis in Vivo. Journal of Agricultural and Food Chemistry, 58, 3055-3063.
http://dx.doi.org/10.1021/jf803366f

[40]   Liang, J-A., Wu, S-L., Lo, H-Y., Hsiang, C-Y. and Ho, T-Y. (2009) Vanillin Inhibits Matrix Metalloproteinase-9 Expression through Down-Regulation of Nuclear Factor-κB Signaling Pathway in Human Hepatocellular Carcinoma Cells. Molecular Pharmacology, 75, 151-157.
http://dx.doi.org/10.1124/mol.108.049502

[41]   Tabassum, S., Amir, S., Arjmand, F., Pettinari, C., Marchetti, F., Masciocchi, N., Lupidi, G. and Pettinari, R. (2013) Mixed-Ligand Cu(II)-Vanillin Schiff Base Complexes; Effect of Coligands on Their DNA Binding, DNA Cleavage, SOD Mimetic and Anticancer Activity. European Journal of Medicinal Chemistry, 60, 216-232.
http://dx.doi.org/10.1016/j.ejmech.2012.08.019

[42]   Anter, J., Romero-Jiménez, M., Fernández-Bedmar, Z., Villatoro-Pulido, M., Analla, M., Alonso-Moraga, A. and Muñoz-Serrano, A. (2011) Antigenotoxicity, Cytotoxicity, and Apoptosis Induction by Apigenin, Bisabolol, and Protocatechuic Acid. Journal of Medicinal Food, 14, 276-283.
http://dx.doi.org/10.1089/jmf.2010.0139

[43]   Heluany, N.F., Homsi-Brandeburgo, M.I., Giglio, J.R., Prado-Franceschi, J. and Rodrigues-Simioni, L. (1992) Effects Induced by Bothropstoxin, a Component from Bothrops jararacussu Snake Venom, on Mouse and Chick Muscle Preparations. Toxicon, 30, 1203-1210.
http://dx.doi.org/10.1016/0041-0101(92)90436-9

[44]   Gutiérrez, J.M., Núñez, J., Díaz, C., Cintra, A.C., Homsi-Brandeburgo, M.I. and Giglio, J.R. (1991) Skeletal Muscle Degeneration and Regeneration after Injection of Bothropstoxin-II, a Phospholipase A2 Isolated from the Venom of the Snake Bothrops jararacussu. Experimental Molecular Pathology, 55, 217-229.
http://dx.doi.org/10.1016/0014-4800(91)90002-F

[45]   Pereira, M.F., Novello, J.C., Cintra, A.C., Giglio, J.R., Landucci, E.T., Oliveira, B. and Marangoni, S. (1998) The Amino Acid Sequence of Bothropstoxin-II, an Asp-49 Myotoxin from Bothrops jararacussu (Jararacucu) Venom with Low Phospholipase A2 Activity. Journal of Protein Chemistry, 17, 381-386.
http://dx.doi.org/10.1023/A:1022563401413

[46]   Oshima-Franco, Y., Leite, G.B., Belo, C.A., Hyslop, S., Prado-Franceschi, J., Cintra, A.C., Giglio, J.R., da Cruz-Höfling, M.A. and Rodrigues-Simioni, L. (2004) The Presynaptic Activity of Bothropstoxin-I, a Myotoxin from Bothrops jararacussu Snake Venom. Basic & Clinical Pharmacology & Toxicology, 95, 175-182.
http://dx.doi.org/10.1111/j.1742-7843.2004.pto_950405.x

[47]   Angulo, Y., Olamendi-Portugal, T., Alape-Girón, A., Hyslop, S., Prado-Franceschi, J., Cintra, A.C., Giglio, J.R., da Cruz-Höfling, M.A. and Rodrigues-Simioni, L. (2002) Structural Characterization and Phylogenetic Relationships of Myotoxin II from Atropoides (Bothrops) nummifer Snake Venom, a Lys49 Phospholipase A2 Homologue. The International Journal of Biochemistry & Cell Biology, 34, 1268-1278. http://dx.doi.org/10.1016/S1357-2725(02)00060-2

[48]   de Oliveira, M., Cavalcante, W.L., Arruda, E.Z., Melo, P.A., Dal-Pai Silva, M. and Gallacci, M. (2003) Antagonism of Myotoxic and Paralyzing Activities of Bothropstoxin-I by Suramin. Toxicon, 42, 373-379.
http://dx.doi.org/10.1016/S0041-0101(03)00166-1

[49]   Melo, R.F., Farrapo, N.M., Rocha Jr., D.S., Silva, M.G., Cogo, J.C., Dal Belo, C.A., Rodrigues Simioni, L., Groppo, F.C. and Oshima-Franco, Y. (2009) Antiophidian Mechanisms of Medicinal Plants. In: Keller, R.B., Ed., Flavonoids: Biosynthesis, Biological Effects and Dietary Sources, Nova Science Publishers, New York, 249-262.

[50]   Cotrim, C.A., de Oliveira, S.C., Diz Filho, E.B., Fonseca, F.V., Baldissera Jr., L., Antunes, E., Ximenes, R.M., Monteiro, H.S., Rabello, M.M., Hernandes, M.Z., de Oliveira Toyama, D. and Toyama, M.H. (2011) Quercetin as an Inhibitor of Snake Venom Secretory Phospholipase A2. Chemico-Biological Interactions, 189, 9-16.
http://dx.doi.org/10.1016/j.cbi.2010.10.016

[51]   Dos Santos, J.I., Cardoso, F.F., Soares, A.M., Dal Pai Silva, M., Gallacci, M. and Fontes, M.R. (2011) Structural and Functional Studies of a Bothropic Myotoxin Complexed to Rosmarinic Acid: New Insights into Lys49-PLA2 Inhibition. Public Library of Science One, 6, e28521.

[52]   Li, C.M., Zhang, Y., Yang, J., Zou, B., Dong, X.Q. and Hagerman, A.E. (2013) The Interaction of a Polymeric Persimmon Proanthocyanidin Fraction with Chinese Cobra PLA2 and BSA. Toxicon, 67, 71-79.
http://dx.doi.org/10.1016/j.toxicon.2013.03.005

[53]   Camargo, T.M., Nazato, V.S., Silva, M.G., Cogo, J.C., Groppo, F.C. and Oshima-Franco, Y. (2010) Bohrops jararacussu Venom-Induced Neuromuscular Blockade Inhibited by Casearia gossypiosperma Briquet Hydroalcoholic Extract. The Journal of Venomous Animals and Toxins Including Tropical Diseases, 16, 432-441.
http://dx.doi.org/10.1590/S1678-91992010000300009

[54]   Tribuiani, N., da Silva, A.M., Ferraz, M.C., Silva, M.G., Bentes, A.P., Graziano, T.S., dos Santos, M.G., Cogo, J.C., Varanda, E.A., Groppo, F.C., Cogo, K. and Oshima-Franco, Y. (2014) Vellozia flavicans Mart. ex Schult. Hydroalcoholic Extract Inhibits the Neuromuscular Blockade Induced by Bothrops jararacussu Venom. BMC Complementary Alternative Medicine, 14, 48.
http://dx.doi.org/10.1186/1472-6882-14-48

[55]   Resende, F.A., Barbosa, L.C., Tavares, D.C., de Camargo, M.S., de Souza Rezende, K.C., e Silva M.L. and Varanda, E.A. (2012) Mutagenicity and Antimutagenicity of (-)-Hinokinin a Trypanosomicidal Compound Measured by Salmonella Microsome and Comet Assays. BioMed Central Complementary and Alternative Medicine, 12, 203.
http://dx.doi.org/10.1186/1472-6882-12-203

[56]   Müller, R., Kikuchi, Y., Probst, G., Schechtman, L., Shimada, H., Sofuni, T. and Tweats, D. (1999) ICH-Harmonised Guidance on Genotoxicity Testing of Pharmaceuticals: Evolution. Mutation Research/Reviews in Mutation Research, 436, 195-225.
http://dx.doi.org/10.1016/S1383-5742(99)00004-6

[57]   Erdem, M.G., Cinkilic, N., Vatan, O., Yilmaz, D., Bagdas, D. and Bilaloglu, R. (2012) Genotoxic and Anti-Genotoxic Effects of Vanillic Acid against Mitomycin C-Induced Genomic Damage in Human Lymphocytes in Vitro. Asian Pacific Journal of Cancer Prevention, 13, 4993-4998.
http://dx.doi.org/10.7314/APJCP.2012.13.10.4993

[58]   Birosová, L., Mikulásová, M. and Vaverková, S. (2005) Antimutagenic Effect of Phenolic Acids. Biomedical Papers, 149, 489-491.

[59]   Stagos, D., Kouris, S. and Kouretas, D. (2004) Plant Phenolics Protect from Bleomycin-Induced Oxidative Stress and Mutagenicity in Salmonella typhimurium TA102. Anticancer Research, 24, 743-745.

[60]   Shaughnessy, D.T., Setzer, R.W. and DeMarini, D.M. (2001) The Antimutagenic Effect of Vanillin and Cinnamaldehyde on Spontaneous Mutation in Salmonella TA104 Is Due to a Reduction in Mutations at GC but Not AT Sites. Mutation Research, 480-481, 55-69. h
ttp://dx.doi.org/10.1016/S0027-5107(01)00169-5

 
 
Top