[1] Zhang, F. (2005) The Schur Complement and Its Applications, Series: Numerical Methods and Algorithms, Vol. 4, Springer, USA.
[2] Haynsworth, E.V. (1968) On the Schur Complement. Basel Mathematical Notes, BMN 20, 17 p.
[3] Schur, I. (1986) On Power Series Which Are Bounded in the Interior of the Unit Circle, Series: Operator Theory: Advances and Applications, Birkhauser, Basel, Vol. 18, 31-59.
[4] Intel Math Kernel Library
http://software.intel.com/en-us/intel-mkl
[5] Aleksandrov, V. and Samuel, H. (2010) The Schur Complement Method and Solution of Large-Scale Geophysical Problems. Bayerisches Geoinstitut (BGI).
http://karel.troja.mff.cuni.cz/documents/2010-ML-Aleksandrov.pdf
[6] Yamazaki, I. and Li, S.X. (2010) On Techniques to Improve Robustness and Scalability of the Schur Complement Method. 9th International Conference on High Performance Computing for Computational Science, Berkeley, 22-25 June 2010, 14 p.
[7] MUMPS
http://mumps.enseeiht.fr/
[8] Duff, I.S. and Reid, J.K. (1983) The Multifrontal Solution of Indefinite Sparse Symmetric Linear. ACM Transactions on Mathematical Software, 9, 302-325.
http://dx.doi.org/10.1145/356044.356047
[9] Liu, J.W.H. (1992) The Multifrontal Method for Sparse Matrix Solution: Theory and Practice. SIAM Review, 34, 82- 109.
http://dx.doi.org/10.1137/1034004
[10] Karypis, G. and Kumar, V. (1996) Parallel Multilevel Graph Partitioning. Proceedings of the 10th International Parallel Processing Symposium, Honolulu, 15-19 April 1996, 314-319.
[11] Karypis, G. and Kumar, V. (1998) A Parallel Algorithm for Multilevel Graph Partitioning and Sparse Matrix Ordering. Journal of Parallel and Distributed Computing, 48, 71-85
http://dx.doi.org/10.1006/jpdc.1997.1403
[12] Amestoy, P.R., Duff, I.S., Pralet, S. and Voemel, C. (2003) Adapting a Parallel Sparse Direct Solver to Architectures with Clusters of SMPs. Parallel Computing, 29, 1645-1668.
http://dx.doi.org/10.1016/j.parco.2003.05.010
[13] Amestoy, P.R., Duff, I.S. and Vomel, C. (2005) Task Scheduling in an Asynchronous Distributed Memory Multifrontal Solver. SIAM Journal on Matrix Analysis and Applications, 26, 544-565.
http://dx.doi.org/10.1137/S0895479802419877
[14] Amestoy, P.R., Guermouche, A., L’Excellent, J.-Y. and Pralet, S. (2006) Hybrid Scheduling for the Parallel Solution of Linear Systems. Parallel Computing, 32, 136-156.
http://dx.doi.org/10.1016/j.parco.2005.07.004
[15] Amestoy, P.R. and Duff, I.S. (1993) Memory Management Issues in Sparse Multifrontal Methods on Multiprocessors. International Journal of High Performance Computing Applications, 7, 64-82.
http://dx.doi.org/10.1177/109434209300700105
[16] Amestoy, P.R., Duff, I.S., L’Excellent, J.-Y. and Koster, J. (2001) A Fully Asynchronous Multifrontal Solver Using Distributed Dynamic Scheduling. SIAM Journal on Matrix Analysis and Applications, 23, 15-41.
http://dx.doi.org/10.1137/S0895479899358194
[17] Kalinkin, A. (2013) Intel Direct Sparse Solver for Clusters, a Research Project for Solving Large Sparse Systems of Linear Algebraic Equations on Clusters. Sparse Days Meeting 2013 at CERFACS, Toulouse, 17-18 June 2013.
http://www.cerfacs.fr/6-27085-Sparse-Days-2013.php
[18] Kalinkin, A. (2013) Sparse Linear Algebra Support in Intel Math Kernel Library. Sparse Linear Algebra Solvers for High Performance Computing Workshop, Scarman House, University of Warwick, 8-9 July 2013.
http://www2.warwick.ac.uk/fac/sci/dcs/research/pcav/linear solvers/programme/
[19] Kalinkin, A. and Arturov, K. (2013) Asynchronous Approach to Memory Management in Sparse Multifrontal Methods on Multiprocessors. Applied Mathematics, 4, 33-39.
http://dx.doi.org/10.4236/am.2013.412A004
[20] Kalinkin, A., Anders, A. and Anders, R. (2014) Intelreg; Math Kernel Library Parallel Direct Sparse Solver for Clusters. EAGE Workshop on High Performance Computing for Upstream, Chania, Crete, 7-10 September 2014.
http://www.eage.org/events/index.php?evp=12682&ActiveMenu=2&Opendivs=s3
http://dx.doi.org/10.3997/2214-4609.20141926
[21] Davis, T.A. and Hu, Y. (2011) The University of Florida Sparse Matrix Collection. ACM Transactions on Mathematical Software, 38, 1:1-1:25.
http://www.cise.ufl.edu/research/sparse/matrices