[1] Liu, W.Y., Li, W.H. and Yue, K. (2007) Intelligent Data Analysis. Science Press, Beijing.
[2] Pearl, J. (1988) Probabilistic Reasoning in Intelligent Systems: Network of Plausible Inference. Morgan Kaufmann, San Mateo.
[3] Li, W.H., Liu, W.Y. and Yue, K. (2008) Recovering the Global Structure from Multiple Local Bayesian Networks. International Journal on Artificial Intelligence Tools, 17, 1067-1088.
http://dx.doi.org/10.1142/S0218213008004308
[4] Cooper, G.F. (1990) The Computational Complexity of Probabilistic Inference Using Bayesian Belief Networks. Artificial Intelligence, 42, 393-405.
http://dx.doi.org/10.1016/0004-3702(90)90060-D
[5] Dagum, P. and Luby, M. (1993) Approximating Probabilistic Inference in Bayesian Belief Networks Is NP-Hard. Artificial Intelligence, 60, 141-153.
http://dx.doi.org/10.1016/0004-3702(93)90036-B
[6] Wellman, M.P. (1990) Fundamental Concepts of Qualitative Probabilistic Networks. Artificial Intelligence, 44, 257-303.
http://dx.doi.org/10.1016/0004-3702(90)90026-V
[7] Bolt, J.H., Renooij, S. and Van der Gaag, L.C. (2003) Upgrading Ambiguous Signs in QPNs. Proceedings of the 19th Conference in Uncertainty in Artificial Intelligence, Acapulco, 7-10 August 2003, 73-80.
[8] Druzdzel, M.J. and Henrion, M. (1993) Efficient Reasoning in Qualitative Probabilistic Networks. Proceedings of the 11th National Conference on Artificial Intelligence, Washington DC, 11-15 July 1993, 548-553.
[9] Lv, Y.L. and Liao, S.Z. (2011) Ambiguity Reduction Based on Qualitative Mutual Information in Qualitative Probabilistic Networks. Pattern Recognition and Artificial Intelligence, 24, 123-129.
[10] Parsons, S. (1995) Refining Reasoning in Qualitative Probabilistic Networks. Proceedings of the 11th Conference on Uncertainty in Artificial Intelligence, Montreal, 18-20 August 1995, 427-434.
[11] Renooij, S., Parsons, S. and Pardieck, P. (2003) Using Kappas as Indicators of Strength in Qualitative Probabilistic Networks. Proceedings of European Conferences on Symbolic and Quantitative Approaches to Reasoning with Uncertainty, Aalborg, 2-5 July 2003, 87-99.
[12] Renooij, S. and Van der Gaag, L.C. (1999) Enhancing QPNs for Trade-Off Resolution. Proceedings of the 15th Conference on Uncertainty in Artificial Intelligence, Stockholm, 30 July-1 August 1999, 559-566.
[13] Renooij, S., Van der Gaag, L.C. and Parsons, S. (2002) Context-Specific Sign-Propagation in Qualitative Probabilistic Networks. Artificial Intelligence, 140, 207-230.
http://dx.doi.org/10.1016/S0004-3702(02)00247-3
[14] Renooij, S., Van der Gaag, L.C., Parsons, S. and Green, S. (2000) Pivotal Pruning of Trade-Off in QPNs. Proceedings of the 16th Conference in Uncertainty in Artificial Intelligence, Stanford, 30 June-3 July 2000, 515-522.
[15] Renooij, S. and Van der Gaag, L.C. (2002) From Qualitative to Quantitative Probabilistic Network. Proceedings of the 18th Conference on Uncertainty in Artificial Intelligence, Edmonton, 1-4 August 2002, 422-429.
[16] Yue, K., Yao, Y., Li, J. and Liu, W.Y. (2010) Qualitative Probabilistic Networks with Reduced Ambiguities. Applied Intelligence, 33, 159-178.
http://dx.doi.org/10.1007/s10489-008-0156-5
[17] Cover, T.M. and Thomas, J.A. (1993) Elements of Information Theory. John Wiley & Sons, Inc., Hoboken.
[18] Shannon, C.E. and Weaver, W. (1949) The Mathematical Theory of Communication. University of Illinois Press, Champaign.
[19] Chen, X.W., Anantha, G. and Lin, X.T. (2008) Improving Bayesian Network Structure Learning with Mutual Information-Based Node Ordering in the K2 Algorithm. IEEE Transactions on Knowledge and Data Engineering, 20, 628-640.
http://dx.doi.org/10.1109/TKDE.2007.190732
[20] De Campos, L.M. (2006) A Scoring Function for Learning Bayesian Networks Based on Mutual Information and Conditional Independence Tests. Journal of Machine Learning Research, 7, 2149-2187.
[21] Nicholson, A.E. and Jitnah, N. (1998) Using Mutual Information to Determine Relevance in Bayesian Networks. Proceedings of the 5th Pacific Rim International Conference on Artificial Intelligence, Singapore, 22-27 November 1998, 399-410.
[22] Ibrahim, Z.M., Ngom, A. and Tawk, A.Y. (2011) Using Qualitative Probability in Reverse-Engineering Gene Regulatory Networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 8, 326-334.
http://dx.doi.org/10.1109/TCBB.2010.98
[23] Liu, W.Y., Yue, K., Liu, S.X. and Sun, Y.B. (2008) Qualitative-Probabilistic-Network-Based Modeling of Temporal Causalities and Its Application to Feedback Loop Identification. Information Sciences, 178, 1803-1824.
http://dx.doi.org/10.1016/j.ins.2007.11.021
[24] Yue, K., Qian, W.H., Fu, X.D., Li, J. and Liu, W.Y. (2014) Qualitative-Probabilistic-Network-Based Fusion of Time-Series Uncertain Knowledge. Soft Computing, Published Online.
http://dx.doi.org/10.1007/s00500-014-1381-y.
[25] De Campos, C.P. and Cozman, F.G. (2013) Complexity of Inferences in Polytree-Shaped Semi-Qualitative Probabilistic Networks. Proceedings of the 27th AAAI Conference on Artificial Intelligence, Bellevue, 14-18 July 2013, 217-223.
[26] Yue, K., Liu, W. and Yue, M. (2011) Quantifying Influences in the Qualitative Probabilistic Network with Interval Probability Parameters. Applied Soft Computing, 11, 1135-1143.
http://dx.doi.org/10.1016/j.asoc.2010.02.013
[27] Shafer, G. (1986) The Combination of Evidence. International Journal of Intelligent Systems, 1, 155-179.
http://dx.doi.org/10.1002/int.4550010302
[28] Norsys Software Corp. (2007) Netica 3.17 Bayesian Network Software from Norsys.
http://www.norsys.com