Back
 JTR  Vol.3 No.1 , March 2015
Model of the Effects of Improving TB Diagnosis on Infection Dynamics in Differing Demographic and HIV-Prevalence Scenarios
Abstract: This paper seeks to examine the sensitivity of tuberculosis transmission (TB) dynamics to the rate at which infectious individuals with active TB begin a TB treatment course, and therefore cease to be infectious to others. We model this by varying both the rate at which individuals are diagnosed and begin treatment, and the demographic conditions in which the epidemic occurs. An agestructured deterministic ordinary differential equation model is used to study the sensitivity of TB transmission dynamics to the implementation of a more effective diagnostic such as Xpert MTB/ RIF in a high HIV prevalence setting. Sensitivity analysis of the effectiveness of the diagnostic (λ) shows the interim disease dynamics in three demographic scenarios defined by differences in HIV prevalence and age structure at a constant transmission rate. In the near future, we expect the diagnostic to have the most effect in areas of high HIV prevalence. In the long term, we expect the diagnostic to have the most significant impact at high transmission rates regardless of HIV prevalence and age structure.
Cite this paper: Rhines, A. , Kato-Maeda, M. and Feldman, M. (2015) Model of the Effects of Improving TB Diagnosis on Infection Dynamics in Differing Demographic and HIV-Prevalence Scenarios. Journal of Tuberculosis Research, 3, 1-10. doi: 10.4236/jtr.2015.31001.
References

[1]   Dye, C., Glaziou, P., Floyd, K. and Raviglione, M. (2013) Prospects for Tuberculosis Elimination. Annual Review of Public Health, 34, 271-286. http://www.ncbi.nlm.nih.gov/pubmed/23244049
http://dx.doi.org/10.1146/annurev-publhealth-031912-114431

[2]   Boehme, C.C., Nicol, M.P., Nabeta, P., Michael, J.S., Gotuzzo, E., et al. (2011) Feasibility, Diagnostic Accuracy, and Effectiveness of Decentralised Use of the Xpert MTB/RIF Test for Diagnosis of Tuberculosis and Multidrug Resistance: A Multicentre Implementation Study. Lancet, 377, 1495-1505.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3085933&tool=pmcentrez&rendertype=abstract http://dx.doi.org/10.1016/S0140-6736(11)60438-8

[3]   Millen, S.J., Uys, P.W., Hargrove, J., van Helden, P.D. and Williams, B.G. (2008) The Effect of Diagnostic Delays on the Drop-Out Rate and the Total Delay to Diagnosis of Tuberculosis. PLoS One, 3, e1933.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=2276686&tool=pmcentrez&rendertype=abstract

[4]   Perkins, M.D. and Cunningham, J. (2007) Facing the Crisis: Improving the Diagnosis of Tuberculosis in the HIV Era. The Journal of Infectious Diseases, Suppl 196, S15-S27.
http://www.ncbi.nlm.nih.gov/pubmed/17624822
http://dx.doi.org/10.1086/518656

[5]   Tortoli, E., Russo, C., Piersimoni, C., Mazzola, E., Dal, M.P., et al. (2012) Clinical Validation of Xpert MTB/RIF for the Diagnosis of Extrapulmonary Tuberculosis. European Respiratory Journal, 1-14.
http://www.ncbi.nlm.nih.gov/pubmed/22241741

[6]   Steingart, K., Sohn, H., Schiller, I., Kloda, L., Boehme, C., et al. (2013) Xpert® MTB/RIF Assay for Pulmonary Tuberculosis and Rifampicin Resistance in Adults. Cochrane Database of Systematic Reviews, Issue 1. http://dx.doi.org/10.1002/14651858.CD009593.pub2

[7]   Hillemann, D., Rüsch-Gerdes, S., Boehme, C. and Richter, E. (2011) Rapid Molecular Detection of Extrapulmonary Tuberculosis by the Automated GeneXpert MTB/RIF System. Journal of Clinical Microbiology, 49, 1202-1205.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3122824&tool=pmcentrez&rendertype=abstract
http://dx.doi.org/10.1128/JCM.02268-10

[8]   Boehme, C.C., Nicol, M.P., Nabeta, P., Michael, J.S., Gotuzzo, E., et al. (2011) Feasibility, Diagnostic Accuracy, and Effectiveness of Decentralised Use of the Xpert MTB/RIF Test for Diagnosis of Tuberculosis and Multidrug Resistance: A Multicentre Implementation Study. Lancet, 377, 1495-1505.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3085933&tool=pmcentrez&rendertype=abstract http://dx.doi.org/10.1016/S0140-6736(11)60438-8

[9]   Jobbagy, Z., van Atta, R., Murphy, K.M., Eshleman, J.R. and Gocke, C.D. (2007) Evaluation of the Cepheid GeneXpert BCR-ABL Assay. Journal of Molecular Diagnostics, 9, 220-227.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=1867453&tool=pmcentrez&rendertype=abstract http://dx.doi.org/10.2353/jmoldx.2007.060112

[10]   Small, P.M. and Pai, M. (2010) Tuberculosis Diagnosis—Time for a Game Change. The New England Journal of Medicine, 363, 1070-1071. http://dx.doi.org/10.1056/NEJMe1008496

[11]   FIND Welcomes First Phase of Xpert MTB/RIF Buy-Down to Reduce Cost of Cartridges by 40% for High-Burden Countries (2012). http://www.finddiagnostics.org/resource-centre/news/120823.html

[12]   Dye, C. (2012) The Potential Impact of New Diagnostic Tests on Tuberculosis Epidemics. Indian Journal of Medical Research, 135, 737-744. http://www.ncbi.nlm.nih.gov/pubmed/22771607

[13]   WHO (2013) Global Tuberculosis Report 2013. Geneva.

[14]   WHO (2011) Report 2011: Global Tuberculosis Control. WHO Report, Geneva.

[15]   Fortson, J.G. (2011) Mortality Risk and Human Capital Investment: The Impact of HIV/AIDS in Sub-Saharan Africa. The Review of Economics and Statistics, 93, 1-15.

[16]   Sommers, M. and Wilson, W. (2011) Governance, Security and Culture: Assessing Africa’s Youth Bulge. International Journal of Conflict and Violence, 5, 345-356.

[17]   CIA World Factbook (2012). https://www.cia.gov/library/publications/the-world-factbook/

[18]   Singhal, S., Mahajan, S.N., Diwan, S.K., Gaidane, A. and Quazi, Z.S. (2011) Correlation of Sputum Smear Status with CD4 Count in Cases of Pulmonary Tuberculosis and HIV Co-Infected Patients—A Hospital Based Study in a Rural Area of Central India. The Indian Journal of Tuberculosis, 58, 108-112.

[19]   Nunn, P., Williams, B., Floyd, K., Dye, C., Elzinga, G. and Raviglione, M. (2005) Tuberculosis Control in the Era of HIV. Nature Reviews Immunology, 5, 819-826. http://dx.doi.org/10.1038/nri1704

[20]   Jones-López, E.C., Namugga, O., Mumbowa, F., Ssebidandi, M., Mbabazi, O., Moine, S., et al. (2013) Cough Aerosols of Mycobacterium tuberculosis Predict New Infection: A Household Contact Study. American Journal of Respiratory and Critical Care Medicine, 187, 1007-1015.
http://dx.doi.org/10.1164/rccm.201208-1422OC

[21]   Reynolds, D.L., Gillis, F., Kitai, I., Deamond, S.L., Silverman, M., King, S.M., et al. (2006) Transmission of Mycobacterium tuberculosis from an Infant. International Journal of Tuberculosis and Lung Disease, 10, 1051-1056. http://www.ncbi.nlm.nih.gov/pubmed/16964800

[22]   Carvalho, A.C.C., Riemer, K.D.E., Nunes, Z.B., Martins, M., Comelli, M., Marinoni, A. and Kritski, A.L. (2001) Transmission of Mycobacterium tuberculosis to Contacts of HIV-Infected Tuberculosis Patients. American Journal of Respiratory and Critical Care Medicine, 164, 2166-2171.
http://dx.doi.org/10.1164/ajrccm.164.12.2103078

[23]   Espinal, M.A., Peréz, E.N., Baéz, J., Hénriquez, L., Fernández, K., et al. (2000) Infectiousness of Mycobacterium tuberculosis in HIV-1-Infected Patients with Tuberculosis: A Prospective Study. Lancet, 355, 275-280. http://www.ncbi.nlm.nih.gov/pubmed/23278714

[24]   Lin, H., Dowdy, D., Dye, C., Murray, M. and Cohen, T. (2012) The Impact of New Tuberculosis Diagnostics on Transmission: Why Context Matters. Bulletin of the World Health Organization, 1-22.

[25]   Menzies, N.A., Cohen, T., Lin, H., Murray, M. and Salomon, J.A. (2012) Population Health Impact and Cost-Effectiveness of Tuberculosis Diagnosis with Xpert MTB/RIF: A Dynamic Simulation and Economic Evaluation. PLoS Medicine, 9, Article ID: e1001347.

[26]   Keeling, M. and Rohani, P. (2008) Modeling Infectious Diseases in Humans and Animals. Princeton University Press, Princeton and Oxford.

[27]   CIA World Factbook (2013). https://www.cia.gov/library/publications/the-world-factbook/

[28]   Ngangro, N.N., Ngarhounoum, D., Ngangro, M.N., Rangar, N., Siriwardana, M.G., des Fontaines, V.H. and Chauvin, P. (2012) Pulmonary Tuberculosis Diagnostic Delays in Chad: A Multicenter, Hospital-Based Survey in Ndjamena and Moundou. BMC Public Health, 12, 513.
http://www.ncbi.nlm.nih.gov/pubmed/22776241 http://dx.doi.org/10.1186/1471-2458-12-513

[29]   Boehme, C.C., Nicol, M.P., Nabeta, P., Michael, J.S., Gotuzzo, E., Tahirli, R., et al. (2011) Feasibility, Diagnostic Accuracy, and Effectiveness of Decentralised Use of the Xpert MTB/RIF Test for Diagnosis of Tuberculosis and Multidrug Resistance: A Multicentre Implementation Study. Lancet, 377, 1495-1505.
http://www.pubmedcentral.nih.gov/articlerender.fcgi?artid=3085933&tool=pmcentrez&rendertype=abstract http://dx.doi.org/10.1016/S0140-6736(11)60438-8

[30]   WHO (2013) Tuberculosis Fact Sheet No. 104.
http://www.who.int/mediacentre/factsheets/fs104/en/index.html

[31]   Evans, C.A. (2011) GeneXpert—A Game-Changer for Tuberculosis Control? PLoS Medicine, 8, e1001064.
http://dx.doi.org/10.1371/journal.pmed.1001064

 
 
Top