JAMP  Vol.3 No.2 , February 2015
Nonlocal Models of Cosmic Ray Transport in the Galaxy
Abstract: Studying the cosmic ray transport in the Galaxy, we deal with two interacting substances: charged particles and interstellar magnetic field. Two coupled local equations describe this complicated system, but elimination of one of them (say, the magnetic field equation) transforms remaining one (the cosmic rays equation) into the nonlocal form. The most popular nonlocal operators in the cosmic ray physics are integro-differential operators of fractional order. This report contains review of recent works in this direction, including original results of the author. In the last section, some specific problems are discussed: fractional operators with soft truncation of their kernels, nonlocal properties of fractional Laplacian, and a true form of the fractional material derivative.
Cite this paper: Uchaikin, V. (2015) Nonlocal Models of Cosmic Ray Transport in the Galaxy. Journal of Applied Mathematics and Physics, 3, 187-200. doi: 10.4236/jamp.2015.32029.

[1]   Lindblad, G. (1976) On the Generators of Quantum Dynamical Semigroups. Communications in Mathematical Physics, 48, 119-130.

[2]   Heisenberg, W. (1966) Die Rolle dor ph?nomenologischen Theorien im System der theoretischen Physik. In: Preludes in Theoretical Physics, Amsterdam, 166.

[3]   Bourret, R. (1959) An Hypothesis Concerning Turbulent Diffusion. Canad. J. Phys, 38, 665-676.

[4]   Monin, A.S. (1955) Equation of Turbulent Diffusion. Dokl. Akad. Nauk SSSR, 105, 256-259.

[5]   Monin, A.S. and Yaglom, A.M. (1975) Statistical Fluid Mechanics. Mechanics of Turbulence Vol. 2, MIT Press, Cambridge. [Translated from Russian: Statisticheskaya Gidromekhanika. Mekhanika Turbulentnosti Part 2 (Nauka, Moscow, 1967)]

[6]   Balescu, R. (2000) Memory Effects in Plasma Transport Theory. Plasma Phys. Control. Fusion, 42, B1-B13.

[7]   Uchaikin, V.V. and Zolotarev, V.M. (1999) Chance and Stability. Stable Distributions and Their Applications. VSP, Utrecht.

[8]   Uchaikin, V.V. (2002) Multidimensional Symmetric Anomalous Diffusion. Chemical Physics, 284, 507-520.

[9]   del Castillo-Negrete, D. (2010) Non-Diffusive, Nonlocal Transport in Fluids and Plasmas. Nonlin. Processes Gheophys., 17, 795-807.

[10]   Brizard, A.J. and Hahm, T.S. (2007) Foundations of Nonlinear Gyro-kinetic Theory. Reviews of Modern Physics, 79, 421-469.

[11]   Str?mgren, B. (1948) On the Density Distribution and Chemical Composition of the Interstellar Gas. Astrophys. J., 108, 242-275.

[12]   Ginzburg, V.L. (1953) Origin of Cosmic Rays and Radioastronomy. Usp.Fiz.Nauk, 51, 343. (In Russian)

[13]   Lagutin, A.A., Nikulin, Yu.A. and Uchaikin, V.V. (2001) The ?knee? in the Primary Cosmic Ray Spectrum as Consequence of the Anomalous Diffusion of the Particles in the Fractal Interstellar Medium. Nucl. Phys. В Proc. Suppl., 97, 267-270.

[14]   Lagutin, A.A. and Uchaikin, V.V. (2003) Anomalous Diffusion Equation: Application to Cosmic Ray Transport. Nucl. Instrum. Meth. Phys. Res., 201B, 212-216.

[15]   Lagutin, A.A., Strelnikov, D.V. and Tyumentsev, A.G. (2001) Mass Composition of Cosmic Rays in Anomalous Diffusion Model: Comparison with Experiment. Proc. of 27th Intern. Cosmic Ray Conf., Hamburg, Germany, 5, Copernicus Gesellschaft, Ham-burg.

[16]   Cadavid, A.C., Lawrence, J.K. and Ruzmaikin, A.A. (1999) Anomalous Diffusion of Solar Magnetic Elements. Astrophys. J, 521, 844-853.

[17]   Osborne, J.L., Wdowczyk, J. and Wolfendale, A.W. (1976) Origin and Propagation of Cosmic Rays in the Range 100 - 1000 GeV. J. Phys. A Math. Gen., 9, 1399-1412.

[18]   Dorman, L.I., Ghosh, A. and Ptuskin, V.S. (1985) Diffusion of Galactic Cosmic Rays in the Vicinity of the Solar System. Astrophys. Space Sci., 109, 87-98.

[19]   Zolotarev, V.M., Uchaikin, V.V. and Saenko, V.V. (1999) Superdiffusion and Stable Laws. JETP, 88, 780-787.

[20]   Uchaikin, V.V. and Sibatov, R.T. (2004) Fractional Derivatives in the Semi-conductor Theory. Technical Physics Letters, 30, 316-318.

[21]   Uchaikin, V.V. and Sibatov, R.T. (2009) Statistical Model of Fluorescence Blinking. JETP, 109, 537-546.

[22]   Uchaikin, V.V., Sibatov, R.T. (2011) Fractional Boltzmann Equation for Multiple Scattering of Resonance Radiation in Low-Temperature Plasma. J. Phys. A Math. Theor., 44, 145501.

[23]   Uchaikin, V.V. (1998) Anomalous Diffusion of Particles with a Finite Free-Motion Velocity. Theoretical and Mathematical Physics, 115, 496-501.

[24]   Uchaikin, V.V. (1998) Anomalous Transport Equations and Their Application to Fractal Walking. Physica A, 255, 65-92.

[25]   Uchaikin, V.V. and Sibatov, R.T. (2012) On Fractional Differential Models for Cosmic Ray Diffusion. Gravitation Cosmology, 18, 122-126.

[26]   Uchaikin, V.V., Sibatov, R.T. and Saenko, V.V. (2013) Escape Time of Cosmic Rays from the Galaxy in the Anomalous Diffusion Model. Bulletin of the Russian Academy of Sciences: Physics, 77, 619-622.

[27]   Uchaikin, V.V., Sibatov, R.T. and Saenko, V.V. (2013) Leaky-Box Approximation to the Fractional Diffusion Model. J. Phys.: Conf. Ser., 409, 012057.

[28]   Uchaikin, V.V. (2010) On the Fractional Derivative Model of the Transport of Cosmic Rays in the Galaxy. JETP Lett., 91, 105-109.

[29]   Hayakawa, S. (1969) Cosmic Ray Physics; Nuclear and Astro-physical Aspects. Wiley-Interscience, New York.

[30]   Getmantsev, G.G. (1963) On the Isotropy of Primary Cosmic Rays. Sov. Astron., 6, 477-479.

[31]   Jokipii, J.R. and Parker, E.N. (1969) Cosmic-Ray Life and the Stochastic Nature of the Galactic Magnetic Field. Astrophys. J., 155, 799.

[32]   Chuvilgin, L.G. and Ptuskin, V.S. (1993) Anomalous Diffusion of Cosmic Rays across the Magnetic Field. Astronomy and Astrophysics, 279, 278-297.

[33]   Webb, G.M., Kaghashvili, E.K., Le Roux, J.A., Shalchi, A., Zank, G.P. and Li, G. (2009) Compound and Perpendicular Diffusion of Cosmic Rays and Random Walk of the Field Lines: II. Non-Parallel Particle Transport and Drifts. Journal of Physics A: Mathematical and Theoretical, 42, 235502.

[34]   Zaburdaev, V.Y. (2005) Theory of Heat Transport in a Magnetized High-Temperature Plasma. Plasma Physics Reports, 31, 1071-1077.

[35]   Uchaikin, V.V. and Saenko, V.V. (2000) Telegraph Equation in Random Walk Problem. Journal of Physical Studies, 4.

[36]   Shlesinger, M.F., Klafter, J. and West, B. (1986) Lévy Walks with Applications to Turbulence and Chaos. Physica A: Statistical Mechanics and its Applications, 140, 212-218.

[37]   Sokolov, I.M. andMetzler, R. (2003) Towards Deterministic Equations for Lévy Walks: The Fractional Material Derivative. Physical Review E, 67, 010101.

[38]   Uchaikin, V.V. and Sibatov, R.T. (2004) One-Dimensional Fractal Walk at a Finite Free Motion Velocity. Technical Physics Letters, 30, 316-318.

[39]   Uchaikin, V., Sibatov, R. and Byzykchi, A. (2014) Cosmic Rays Propagation along Solar Magnetic Field Lines: A Fractional Approach. Communications in Applied and Industrial Mathematics, 6, 480.

[40]   Carreras, В.A., Lynch, V.E. and Zaslavsky, G.M. (2001) Anomalous Diffusion and Exit Time Distribution of Particle Tracers in Plasma Turbulence Model. Phys. Plasmas, 8, 5096.

[41]   Sibatov, R.T. and Uchaikin, V.V. (2011) Truncated Lévy Statistics for Dispersive Transport in Disordered Semiconductors. Commun. Nonlin. Sci. Numer. Simulat, 16, 4564-4572.

[42]   Zoia, A., Rosso, A. and Kardar, M. (2007) Fractional Laplacian in Bounded Domains. Phys. Rev. E, 76, 021116.

[43]   Krepysheva, N., Di Pietro, L. and Neel, M.-C. (2006) Space-Fractional Advection-Diffusion and Reflective Boundary Condition. Phys. Rev. E, 73, 021104.

[44]   Rafeiro, H. and Samko, S. (2008) Approximative Method for the Inversion of the Riesz Potential Operator in Variable Lebesgue Spaces. Fract. Calc. Appl. Anal, 11, 269-280.

[45]   Guan, Q.-Y. and Ma, Z.-M. (2005) Boundary Problems for Fractional. Stoch. Dyn., 5, 385.

[46]   Uchaikin, V.V. (2013) Fractional Phenomenology of Cosmic Ray Anomalous Diffusion. Physics-Uspekhi, 56, 1074- 1119.