[1] Ben-Naim, A. (2011) Pitfalls in Anfinsen’s Thermodynamic Hypothesis. Chemical Physics Letters, 511, 126-128.
http://dx.doi.org/10.1016/j.cplett.2011.05.049
[2] Müller, I. (2010) Miscellania about Entropy, Energy, and Available Free Energy. Symmetry, 2, 916-934.
http://dx.doi.org/10.3390/sym2020916
[3] Anfinsen, C.B. (1973) Principles that Govern the Folding of Protein Chains. Science, 181, 223-230.
http://dx.doi.org/10.1126/science.181.4096.223
[4] Wang, Y., Zhang, H., Li, W. and Scott, R.A. (1995) Discriminating Compact Nonnative Structure from the Native Structure of Globular Proteins. PNAS, 92, 709-713.
[5] Kaushik, A. and Gupta, E. (2013) Protein Folding grand Challenge: Hydrophobic vs. Hydrophilic Forces. Journal of Biomolecular Structure and Dynamics, 31, 1011-1012.
[6] Ben-Naim, A. (2012) Levinthal’s Question Revisited, and Answered. Journal of Biomolecular Structure and Dynamics, 30, 113-124.
http://dx.doi.org/10.1080/07391102.2012.674286
[7] Lazaridis, T. and Karplus, M. (2003) Thermodynamics of Protein Folding: A Microscopic View. Biophysical Chemistry, 100, 367-395.
http://dx.doi.org/10.1016/S0301-4622(02)00293-4
[8] Ben-Naim, A. (2013) Response to Comments on My Article: Liventhal’s Question Revisited and Answered. Ben-Naim A. (2012) Journal of Biomolecular Structure and Dynamics, 30, 113-124. Journal of Biomolecular Structure and Dynamics, 31, 1028-1033.
http://dx.doi.org/10.1080/07391102.2012.748548
[9] Schafer, N.P., Kim, B.L., Zhang, Q. and Wolynes, P.G. (2013) Learning to Fold Protein Using Energy Landscape Theory. arXiv:1312.7283v1 [q-bio.BM]
http://arxiv.org/pdf/1312.7283.pdf
[10] Liu, S.Q., Ji, X.L., Tao, Y., Tan, D.Y., Zhang, K.Q. and Fu, Y.X. (2012) Protein Folding, Binding and Energy Landscape: A Synthesis. In: Kaumaya, P.T.P., Ed., Protein Engineering, Intech, Rijeka, 207-253.
[11] Fang, Y. (2015) Why Ben-Naim’s Deepest Pitfall Does Not Exist. To Appear in Open Journal of Biophysics.
[12] Fang, Y. (2012) Gibbs Free Energy Formula for Protein Folding. In: Morales-Rodriguez, R., Ed., Thermodynamics—Fundamentals and Its Application in Science, Intech, Rijeka, 47-82.
http://www.intechopen.com/books/thermodynamics-fundamentals-and-its-application-in-science
[13] Fang, Y. (2013) Ben-Naim’s Pitfalls: Don Quixote’s Windmill. Open Journal of Biophysics, 3, 13-21.
[14] Fang, Y. (2014) The Second Law, Gibbs Free Energy, Geometry, and Protein Folding. Journal of Advances in Physics, 3, 278-285.
[15] Fang, Y. (2014) A Gibbs Free Energy Formula for Protein Folding Derived from Quantum Statistics. Science China Physics, Mechanics & Astronomy, 57, 1547-1551.
http://dx.doi.org/10.1007/s11433-013-5288-x
[16] Gillet, J. and Ghosh, I. (2013) Concepts on the Protein Folding Problem. Journal of Biomolecular Structure and Dynamics, 31, 1020-1023.
http://dx.doi.org/10.1080/07391102.2012.748546
[17] Bader, R.F.W. (1990) Atoms in Molecules: A Quantum Theory. Clarendon Press, Oxford.
[18] Pippard, A.A. (1957) The Elements of Classical Thermodynamics. Cambridge University Press, Cambridge.
[19] Richards, F.M. (1977) Areas, Volumes, Packing, and Protein Structure. Annual Review of Biophysics and Bioengineering, 6, 151-176.
http://dx.doi.org/10.1146/annurev.bb.06.060177.001055
[20] Tuñón, I., Silla, E. and Pascual-Ahuir, J.L. (1992) Molecular Surface Area and Hydrophobic Effect. Protein Engineering, Design and Selection, 5, 715-716.
http://dx.doi.org/10.1093/protein/5.8.715
[21] Jackson, R.M. and Sternberg, M.J.E. (1993) Protein Surface Area Defined. Nature, 366, 638.
http://dx.doi.org/10.1038/366638b0
[22] Eisenberg, D. and McLachlan, A.D. (1986) Solvation Energy in Protein Folding and Binding. Nature, 319, 199-203.
http://dx.doi.org/10.1038/319199a0
[23] Fang, Y. and Jing, J. (2008) Implementation of a Mathematical Protein Folding Model. International Journal of Pure and Applied Mathematics, 42, 481-488.
[24] Ben-Naim, A. (2013) Comment on a Paper: “Ben-Naim’s ‘Pitfalls’: Don Quixote’s Windmill” by Y. Fang, Open Journal of Biophysics, 2013, 3, 13-21. Open Journal of Biophysics, 3, 275-276.
[25] Fang, Y. and Jing, J. (2010) Geometry, Thermodynamics, and Protein. Journal of Theoretical Biology, 262, 383-390.
http://dx.doi.org/10.1016/j.jtbi.2009.09.013
[26] Hubner, I.A. and Shakhnovic, E.I. (2005) Geometric and Physical Considerations for Realistic Protein Models. Physical Review E, 72, Article ID: 022901.
http://dx.doi.org/10.1103/PhysRevE.72.022901
[27] Lee, B. and Richards, F.M. (1971) The Interpretation of Protein Structures: Estimation of Static Accessibility. Journal of Molecular Biology, 55, 379-400.
http://dx.doi.org/10.1016/0022-2836(71)90324-X
[28] Janin, J. (1976) Surface Area of Globular Proteins. Journal of Molecular Biology, 105, 13-14.
http://dx.doi.org/10.1016/0022-2836(76)90192-3
[29] Richards, F.M. (1979) Packing Defects, Cavities, Volume Fluctuations, and Access to the Interior of Proteins. Including Some General Comments on Surface Area and Protein Structure. Carlsberg Research Communications, 44, 47-63.
http://dx.doi.org/10.1007/BF02906521
[30] Novotny, J., Bruccoleri, R. and Karplus, M. (1984) An Analysis of Incorrectly Folded Protein Models: Implications for Structure Predictions. Journal of Molecular Biology, 177, 787-818.
http://dx.doi.org/10.1016/0022-2836(84)90049-4
[31] Novotny, J., Rashin, A.A. and Bruccoleri, R. (1986) Criteria that Discriminate between Native Proteins and Incorrectly Folded Models. Proteins, 4, 19-30.
http://dx.doi.org/10.1002/prot.340040105
[32] Fang, Y. (2005) Mathematical Protein Folding Problem. In: Hoffman, D., Ed., Global Theory of Minimal Surfaces. Proceedings of the Clay Mathematical Proceedings, Vol. 2, American Mathematical Society, Clay Mathematics Institute, 611-622.