On a Problem of an Infinite Plate with a Curvilinear Hole inside the Unit Circle

Show more

References

[1] Muskhelishvili, N.I. (1953) Some Basic Problems of Mathematical Theory of Elasticity. Noordroof, Holland.

[2] Spiegel. M.R. (1964) Theory and Problems of Complex Variables, Schaum’s Outline Series. McGraw-Hill, New York.

[3] Rubenfeld, L.A. (1985) A First Course in Applied Complex Variables. John Wiley & Sons, New York.

[4] Bieberbach, L. (1953) Conformal Mapping. Chelsea Publishing Company, New York.

[5] Popov, G.Ya. (1982) Contact Problems for a Linearly Deformable Functions. Odessa, Kiev.

[6] Sabbah, A.S., Abdou, M.A. and Ismail, A.S. (2002) An Infinite Plate with a Curvilinear Hole and Flowing Heat. Proc. Math. Phys. Soc. Egypt.

[7] Atkin, R.J. and Fox, N. (1990) An Introduction to the Theory of Elasticity. Longman, Harlow.

[8] Colton, D. and Kress, R. (1983) Integral Equation Method in Scattering Theory. John Wiley, New York.

[9] Abdou, M.A. (2003) On Asymptotic Method for Fredholm-Volterra Integral Equation of the Second Kind in Contact Problems. Journal of Computational and Applied Mathematics, 154, 431-446.

http://dx.doi.org/10.1016/S0377-0427(02)00862-2

[10] Noda, N. and Hetnarski Yoshinobu Tanigowa, R.B. (2003) Thermal Stresses. Taylor and Francis, UK.

[11] Hetnarski, R.B. (2004) Mathematical Theory of Elasticity. Taylor and Francis, London.

[12] Parkus, H. (1976) Thermoelasticity. Springer-Verlag, New York.

[13] Gakhov, F.D. (1966) Boundary Value Problems. General Publishing Company, Ltd., Canada

[14] Ciarlet, P.G., Schultz, M.H. and Varga, R.S. (1967) Numerical Methods of High-Order Accuracy for Nonlinear Boundary Value Problems. I. One Dimensional Problem. Numerische Mathematik, 9, 394-430.

[15] Zebib, A. (1984) A Chebyshev Method for the Solution of Boundary Value Problems. Journal of Computational Physics, 53, 443-455.

http://dx.doi.org/10.1016/0021-9991(84)90070-6

[16] Saito, S. and Yamamto, M. (1989) Boundary Value Problems of Quasilinear Ordinary Differential Systems on a Finite Interval. Math. Japon., 34, 447-458.

[17] Abdou, M.A. (1994) First and Second Fundamental Problems for an Elastic Infinite Plate with a Curvilinear Hole. Alex. Eng. J., 33, 227-233.

[18] Abdou, M.A. (2002) Fundamental Problems for an Infinite Plate with a Curvilinear Hole Having Infinite Poles. Applied Mathematics and Computation, 125, 177-193.

[19] Abdou, M.A. and Khamis, A.K. (2000) On a Problem of an Infinite Plate with a Curvilinear Hole Having Three Poles and Arbitrary Shape. Bulletin of the Calcutta Mathematical Society, 92, 309-322.

[20] Abd-Alla, A.M., Abo-Dahab, S.M. and Bayones, F.S. (2013) Propagation of Rayleigh Waves in Magneto-Thermo-Elastic Half-Space of a Homogeneous Orthotropic Material under the Effect of Rotation, Initial Stress and Gravity Field. Journal of Vibration and Control, 19, 1395-1420.

http://dx.doi.org/10.1177/1077546312444912

[21] Abd-Alla, A.M. and Abo-Dahab, S.M. (2012) Effect of Rotation and Initial Stress on an Infinite Generalized Magneto-Thermoelastic Diffusion Body with a Spherical Cavity. Journal of Thermal Stresses, 35, 892-912.

http://dx.doi.org/10.1080/01495739.2012.720209

[22] Abd-Alla, A.M., Abd-Alla, A.N. and Zeidan, N.A. (2000) Thermal Stresses in a Non-Homogeneous Orthotropic Elastic Multilayered Cylinder. Journal of Thermal Stresses, 23, 413-428.

[23] Abd-Alla, A.M., Mahmoud, S.R., Abo-Dahab, S.M. and Helmy, M.I. (2011) Propagation of S-Wave in a Non-Homo-geneous Anisotropic Incompressible and Initially Stressed Medium under Influence of Gravity Field. Applied Mathematics and Computation, 217, 4321-4332.

http://dx.doi.org/10.1016/j.amc.2010.10.029

[24] Abd-Alla, A.M., Mahmoud, S.R. and AL-Shehri, N.A. (2011) Effect of the Rotation on a Non-Homogeneous Infinite Cylinder of Orthotropic Material. Applied Mathematics and Computation, 217, 8914-8922.