OJPsych  Vol.5 No.1 , January 2015
Biomarker Symptom Profiles for Schizophrenia and Schizoaffective Psychosis
Abstract: Background: Neuroscience can assist clinical understanding and therapy by finding neurobiological markers for mental illness symptoms. Objectives: To quantify biomarkers for schizophrenia and schizoaffective disorder and relate these to discrete symptoms of psychosis. Methods: Within a case-control design with multiple exclusion criteria to exclude organic causes and confounding variables, 67 DSM IV-R diagnosed and 67 control participants from a defined hospital, clinic and community catchment area were investigated for candidate markers. Participants underwent protocol-based diagnostic-checking and symptom rating via Brief Psychiatric Rating Scale and Positive and Negative Syndrome Scale, functional-rating scales, biological sample-collection and sensory-processing assessment. Blood and urine samples were analysed for monoamine neurotransmitters, their metabolites, vitamin cofactors and intermediate-substances related to oxidative stress and metabolism of monoamines. Neurocognitive assessment of visual and auditory processing was conducted at both peripheral and central levels. Biomarkers were defined by Receiver Operating Curve (ROC) analysis. Spearman’s analysis explored correlations between discrete symptoms and the biomarkers. Results: Receiver Operating Curve (ROC) analysis identified twenty-one biomarkers: elevated urinary dopamine, noradrenaline, adrenaline and hydroxy pyrroline-2-one as a marker of oxidative stress. Other biomarkers were deficits in vitamins D, B6 and folate, elevation of serum B12 and free serum copper to zinc ratio, along with deficits in dichotic listening, distance vision, visual and auditory speed of processing, visual and auditory working memory and six middle ear acoustic reflex parameters. Discrete symptoms such as delusions, hostility, suicidality and auditory hallucinations were biomarker-defined and symptom biomarker correlations assumed an understandable pattern in terms of the catecholamines and their relationship to biochemistry, brain function and disconnectivity. Conclusions: In the absence of a full diagnosis, biomarker-symptom-signatures inform psychiatry about the structure of psychosis and provide an understandable pattern that points in the direction of a new neurobiological system of symptom-formation and treatment.
Cite this paper: Fryar-Williams, S. , Strobel, J. , (2015) Biomarker Symptom Profiles for Schizophrenia and Schizoaffective Psychosis. Open Journal of Psychiatry, 5, 78-112. doi: 10.4236/ojpsych.2015.51011.

[1]   Liu, W., Yuen, E.Y., Nesse, R.M. and Stein, D.J. (2012) Towards a Genuinely Medical Model for Psychiatric Nosology, BMC Medicine, 10, 5.

[2]   Andreasen, N.C. (1985) Positive vs. Negative Schizophrenia: A Critical Evaluation. Schizophrenia Bulletin, 11, 380-389.

[3]   Stober, G., Ben-Shachar, D., Cardon, M., Falkai, P., Fonteh, A.N., Gawlik, M., et al. (2009) Schizophrenia: From the Brain to Peripheral Markers. A Consensus Paper of the WFSBP Task Force on Biological Markers. The World Journal of Biological Psychiatry, 10, 27-55.

[4]   Domenici, E. and Muglia, P. (2007) The Search for Peripheral Markers in Psychiatry by Genomic and Proteomic Approaches. Expert Opinion on Medical Diagnostics, 1, 235-251.

[5]   Schwarz, E., Guest, P.C., Rahmoune, H., Harris, L.W., Wang, L., Leweke, F.M., Rothermundt, M., Bogerts, B., Koethe, D., Kranaster, L., Ohrmann, P., Suslow, T., Mc Allister, G., Spain, M., Barnes, A., van beveren, N.J.M., Baron-Cohen, S., Steiner, J., Torrey, F.E., Yolken, R.H. and Bahn, S. (2012) Identification of a Biological Signature for Schizophrenia in Serum. Molecular Psychiatry, 17, 494-502.

[6]   Bracken, P., Thomas, P., Timini, S., Asen, E., Behr, G., Beuster, C., Bhunnoo, S., Brown, I., China, N., Double, D., Downer, S., Evans, C., Fernando, S., Garland, M.R., Hopkins, W., Huws, R., Johnson, B., Martindale, B., Middelteon, H., Moldavsky, D., Moincrieff, J., Mullins, S., Nelki, J., Pizzo, M., Rodger, J., Smyth, M., Summerfiled, D., Wallace, J. and Yeomans, D. (2012) Psychiatry beyond the Current Paradigm. The British Journal of Psychiatry, 201, 430-434.

[7]   Stayer, C., Sporn, A., Gogtay, N., Tossell, J., Lenane, M., Gochman, P. and Rapoport, J.L. (2004) Looking for Childhood Schizophrenia: Case Series of False Positives. Journal of the American Academy of Child and Adolescent Psychiatry, 43, 1026-1029.

[8]   McGorry, P.D. (1991) Paradigm Failure in Functional Psychoses: Review and Implications. Australian New Zealand Journal of Psychiatry, 25, 43-55.

[9]   Singh, I. and Rose, N. (2009) Biomarkers in Psychiatry. Nature, 460, 202-207.

[10]   American Psychiatric Association (1994) Diagnostic and Statistical Manual of Mental Disorders. 5th Edition, American Psychiatric Association, Washington DC.

[11]   Lombardini, J.B. and Talalay, P. (1971) Formations and Functions and Regulatory Importance of S-Adenosyl-L-Methionine. Advances in Enzyme Regulation, 9, 349-384.

[12]   Rivett, A.J. and Roth, J.A. (1982) Kinetic Studies on the O-Methylation of Dopamine by Human Brain Membrane-Bound Catechol-O-Methyltransferase. Biochemistry, 21, 1740-1742.

[13]   Bottiglieri, T., Laundy, M., Crellin, R., Toone, B.K., Carney, M.W.P. and Reynolds, E.H. (2000) Homocysteine, Folate, Methylation and Monoamine Metabolism in Depression. Journal of Neurology, Neurosurgery Psychiatry, 69, 228-232.

[14]   Mannisto, P.T., Ulmanen, I., Lundstrom, K., Taskinen, J., Tenhunen, J., Tilgmann, C. and Kaakkola, S. (1992) Characteristics of Catechol-O-Methyltransferase (COMT) and Properties of Selective COMT Inhibitors. Progress in Drug Research, 39, 291-350.

[15]   Mudd, S.G.H., Levy, H.L. and Skovby, F. (1995) Disorders of Transsulfuration. In: Scriver, C.R., Beaudet, A.L., Sly, W.S. and Valle, D., Eds., The Metabolic and Molecular Basis of Inherited Disease, 7th Edition, McGraw-Hill, Inc., New York, 1279-1327.

[16]   Frankenburg, F.R. (2007) The Role of One-Carbon Metabolism in Schizophrenia and Depression. Harvard Review of Psychiatry, 15, 146-160.

[17]   van Kammen, D.P. and Kelly, M. (1991) Dopamine and Norepinephrine Activity in Schizophrenia: An Integrative Perspective. Schizophrenia Research, 4, 173-191.

[18]   Irvine, D.G. (1978) Hydroxy-Haemopyrrolenone, Not Kryptopyrrole, in the Urine of Schizophrenics and Porphyrics. Clinical Chemistry, 24, 2069-2070.

[19]   Wurtman, R.J., Hefti, F. and Melamed, E. (1980) Precursor Control of Neurotransmitter Synthesis. Pharmacological Reviews, 32, 315-335.

[20]   Krebs, M.O., Bellon, A., Mainguy, G., Jay, T.M. and Frieling, H. (2009) One-Carbon Metabolism and Schizophrenia: Current Challenges and Future Directions. Trends in Molecular Medicine, 15, 562-570.

[21]   Shea, T.B. and Rogers, E. (2014) Lifetime Requirement of the Methionine Cycle for Neuronal Development and Maintenance. Current Opinion in Psychiatry, 27, 138-142.

[22]   Halsted, C.H. (2013) B-Vitamin Dependent Methionine Metabolism and Alcoholic Liver Disease. Clinical Chemistry and Laboratory Medicine, 51, 457-565.

[23]   Bottiglieri, T., Laundy, M., Crellin, R., Toone, B.K., Carney, M.W.P. and Reynolds, E.H. (2000) Homocysteine, Folate, Methylation and Monoamine Metabolism in Depression. Journal of Neurology, Neurosurgery Psychiatry, 69, 228-232.

[24]   Selhub, J. (1999) Homocysteine Metabolism. Annual Review of Nutrition, 19, 217-246.

[25]   Banerjee, R.V. and Mathews, R.G. (1990) Cobalamin-Dependent Methionine Synthase. The FASEB Journal, 4, 1450-1459.

[26]   Waggoner, D.J., Bartnikas, T.B. and Gitlin, J.D. (1999) The Role of Copper in Neurodegenerative Disease. Journal of Neurochemistry, 72, 2092-2098.

[27]   Wolf, T.L., Kotun, J. and Meador-Woodruff, J.H. (2006) Plasma Copper, Iron, Ceruloplasmin and Ferroxidase Activity in Schizophrenia. Schizophrenia Research, 86, 167-171.

[28]   Peariso, K., Goulding, C.W., Huang, S., Matthews, R.G. and Penner-Hahn, J.E. (1998) Characterization of the Zinc Binding Site in Methionine Synthase Enzymes of Escherichia coli: The Role of Zinc in the Methylation of Homocysteine. Journal of the American Chemical Society, 120, 8410-8416.

[29]   Brown, D.D., Tomchick, R. and Axelrod, J. (2959) The Distribution and Properties of a Histamine-Methylating Enzyme. The Journal of Biological Chemistry, 234, 2948-2950.

[30]   Hustad, S., Midttun, Om., Schneede, J., Vollset, S.E., Grotmol, T. and Ueland, P.M. (2007) The Metylenetetrahydrofolate Reductase 677CT Polymorphism as a Modulator of a B Vitamin Network with Major Effects on Homocysteine Metabolism. The American Journal of Human Genetics, 80, 546-855.

[31]   McGrath, J.J., Eyles, D.W., Pedersen, C.B., Anderson, C., Ko, P., Burne, T.H., Norgaard-Pedersen, B., Hougaard, D.M. and Mortensen, B. (2010) Neonatal Vitamin D Status and Risk of Schizophrenia: A Population-Based Case-Control Study. Archives of General Psychiatry, 67, 889-894.

[32]   Overall, J.E. and Gorham, D.R. (1962) The Brief Psychiatric Rating Scale. Psychological Report, 10, 799-812.

[33]   Kay, S.R., Fiszbein, A. and Opler, L.A. (1987) The Positive and Negative Syndrome Scale (PANSS) for Schizophrenia. Schizophrenia Bulletin, 13, 261-276.

[34]   Simpson, G.M. and Angus, J.W.S. (1970) A Rating Scale for Extrapyramidal Side Effects. Acta Psychiatrica Scandinavica, 212, 11-19.

[35]   Zilles, D., Gruber, E., Falkai, P. and Gruber, O. (2010) Patients with Schizophrenia Show Deficits of Working Memory Maintenance Components in Circuit-Specific Tasks. European Archives of Psychiatry and Clinical Neurosciences, 260, 519-525.

[36]   Park, S. and Holzman, P.S. (1992) Schizophrenics Show Spatial Working Memory Deficits. Archives of General Psychiatry, 49, 975-982.

[37]   Whitcher, J.P. and Riordan-Eva, P. (2008) Vaughan & Asbury’s General Ophthalmology. 17th Edition, Lange Medical Books/McGraw-Hill, New York.

[38]   Maico Diagnostics (2005) Operating Instructions MA 40, Diagnostic GmbH, Salzufer 13/14 D-10583, Berlin.

[39]   Grason-Stadler—A Division of VIASYS Healthcare (2005) GSI 38 Auto Tymp Instruction Manual, Instruction Manual 1738-0100, Rev 8, Madison.

[40]   Mathwave (2013)

[41]   Addinsoft (2013) XLSTAT.

[42]   De Long, E.R., De Long, D.M. and Clarke-Pearson, D.L. (1988) Comparing the Areas under Two or More Correlated Receiver Operating Characteristic Curves: A Nonparametric Approach. Biometrics, 44, 837-845.

[43]   Grund, B. and Sabin, C. (2010) Analysis of Biomarker Data: Logs, Odds Ratios and ROC Curves. Current Opinion in HIV and AIDS, 5, 473-479.

[44]   van Praag, H.M., Asnis, G.M., Kahn, R.S., Brown, S.L., Korn, M., Harkavy Friedman, J.M. and Wetzler, S. (1990) Monoamines and Abnormal Behaviour: A Multi-Aminergic Perspective. British Journal of Psychiatry, 157, 723-734.

[45]   Marzo, A., Bai, J. and Otani, S. (2009) Neuroplasticity by Noradrenalin in Mammalian Brain. Current Neuropharmacology, 7, 286-295.

[46]   Arnsten, A.F., Mathew, R., Ubriani, R., Taylor, J.R. and Li, B.M. (1999) Alpha-1-Noradrenergic Receptor Stimulation Impairs Prefrontal Cortical Cognitive Function. Biological Psychiatry, 45, 26-31.

[47]   Waterhouse, B.D., Moises, H.C. and Woodward, D.J. (1980) Noradrenergic Modulation of Somatosensory Cortical Neuronal Responses to Ionophoretically Applied Putative Neurotransmitters. Experimental Neurology, 69, 30-49.

[48]   Waterhouse, B.D., Sessler, F.M., Cheng, J.T., Woodward, D.J., Azizi, S.A. and Moises, H.C. (1988) New Evidence for a Gating Action of Norepinephrine in Central Neuronal Circuits of Mammalian Brain. Brain Research Bulletin, 21, 245-432.

[49]   Armstrong-James, M. and Fox, K. (1983) Effects of Ionophoresed Noradrenaline on the Spontaneous Activity of Neurones in Rat Primary Somatosensory Cortex. The Journal of Physiology, 335, 427-447.

[50]   Foote, S.L. and Morrison, J.H. (1987) Extrathalamic Modulation of Cortical Function. Annual Review of Neuroscience, 10, 67-95.

[51]   Foote, S.L., Freedman, R. and Oliver, A.P. (1975) Effects of Putative Neurotransmitters on Neuronal Activity in Monkey Auditory Cortex. Brain Research, 86, 229-242.

[52]   Scheiderer, C.L., Dobrunz, L.E. and McMahon, L.L. (2004) Novel Form of Long-Term Synaptic Depression in Rat Hippocampus Induced by Activation of Alpha 1 Adrenergic Receptors. Journal of Neurophysiology, 91, 1071-1077.

[53]   Warren, R.A. and Dykes, R.W. (1996) Transient and Long-Lasting Effects of Ionophoretically Administered Norepinephrine on Somatosensory Cortical Neurons in Halothane-Anaethetized Cats. Canadian Journal of Physiology and Pharmacology, 74, 38-57.

[54]   Nakane, H., Shimizu, N. and Hon, T. (1994) Stress-Induced Norepinephrine Release in the Rat Prefrontal Cortex Measured by Microdialysis. American Journal of Physiology, 267, R1559-R1566.

[55]   Hoffer, A. (1994) Schizophrenia: An Evolutionary Defense against Severe Stress. Journal of Orthomolecular Medicine, 9, 205-220.

[56]   Walker, E., Mittal, V. and Tessner, K. (2008) Stress and the Hypothalamic Pituitary Axis in the Developmental Course of Schizophrenia. Annual Review of Clinical Psychology, 4, 189-216.

[57]   Pariante, C.M., Dazzan, P., Danese, A., Morgan, K.D., Brudaglio, F., Morgan, C., Fearon, P., Orr, K., Hutchinson, G., Pantelis, C., Velakoulis, D., Jones, P.B., Leff, J. and Murray, R.M. (2005) Increased Pituitary Volume in Antipsychotic-Free and Antipsychotic-Treated Patients of the ?sop First-Onset Psychosis Study. Neuropsychopharmacology, 30, 1923-1931.

[58]   Henderson, D.C., Borba, C.P., Daley, T.B., Boxill, R., Nguyen, D.D., Culhane, M.A., Louie, P., Cather, C., Evins, A.E., Freudenreich, O., Taber, S.M. and Goff, D.C. (2006) Dietary Intake Profile of Patients with Schizophrenia. Annals of Clinical Psychiatry, 18, 99-105.

[59]   Levitt, M., Spector, S., Sjoerdsma, A. and Undenfriend, S. (1965) Elucidation of the Rate-Limiting Step in Norepinephrine Biosynthesis in the Perfused Guinea-Pig Heart. Journal of Pharmacology and Experimental Therapeutics, 148, 1-8.

[60]   Allen, G.F.G., Neergheen, V., Oppenheim, M., Fitzgerald, J.C., Footitt, E., Hyland, K., Clayton, P.T., Land, J.M. and Heales, S.J.R. (2010) Pyridoxal 5’-Phosphate Deficiency Causes a Loss of Aromatic l-Amino Acid Decarboxylase in Patients and Human Neuroblastoma Cells, Implications for Aromatic l-Amino Acid Decarboxylase and Vitamin B-6 Deficiency States. Journal of Neurochemistry, 114, 87-96.

[61]   Frankenberg, F.R. (2007) The Role of One-Carbon Metabolism in Schizophrenia and Depression. Harvard Review of Psychiatry, 15,146-160.

[62]   Godfrey, P.S.A., Toone, B.K., Bottiglien, T., Laundy, M., Reynolds, E.H., Carney, M.W.P., Flynn, T.G. and Chanarin, I. (1990) Enhancement of Recovery from Psychiatric Illness by Methylfolate. The Lancet, 336, 392-395.

[63]   Pekka, T., Mannisto, P.T. and Seppo Kaakkola, S. (1999) Catechol-O-Methyltransferase (COMT): Biochemistry, Molecular Biology, Pharmacology, and Clinical Efficacy of the New Selective COMT Inhibitors. Pharmacological Reviews, 51, 593-628.

[64]   Lachman, H.M., Papolos, D.F., Saito, T., Yu, Y.-M., Szumlanski, C.L. and Weinshilboum, R.M. (1996) Human Catechol-O-Methyltransferase Pharmacogenetics: Description of a Functional Polymorphism and Its Potential Application to Neuropsychiatric Disorders. Pharmacogenetics, 6, 193-277.

[65]   Walker, H.A. (1976) Catechol-O-Methyltransferase Activity in Psychotic Children. Journal of Autism and Childhood Schizophrenia, 6, 263-266.

[66]   Cheung, V., Cheung, C., McAlonan, G.M., Deng, Y., Wong, J.G., Yip, L., Tai, K.S., Khong, P.L., Sham, P. and Chua, S.E. (2008) A Diffusion Tensor Imaging Study of Structural Dysconnectivity in Never-Medicated, First-Episode Schizophrenia. Psychological Medicine, 38, 877-885.

[67]   Wolf, N.D., Sambataro, F., Vasic, N., Frasch, K., Schmid, M., Schonfeldt-Lecuona, C., Thomann, P.A. and Wolf, R.C. (2011) Dysconnectivity of Multiple Resting-State Networks in Patients with Schizophrenia Who Have Persistent Auditory Verbal Hallucinations. Journal of Psychiatry Neuroscience, 36, 366-374.

[68]   Yao, J.K., Reddy, R.D. and van Kammen, D.P. (2001) Oxidative Damage and Schizophrenia. An Overview of the Evidence and Its Therapeutic Implications. CNS Drugs, 15, 287-310.

[69]   Waggoner, D.J., Bartnikas, T.B. and Gitlin, J. (1999) The Role of Copper in Neurodegenerative Disease. Neurobiology of Disease, 6, 221-230.

[70]   Hidalgo, F.J., Nogales, F. and Zamora, R. (2004) Determination of Pyrrolized Phospholipids in Oxidized Phospholipid Vesicles and Lipoproteins. Biochemistry, 334, 155-163.

[71]   Russell, C.S. (1972) Biosynthesis of Porphyrins and the Origin of “Mauve Factor”. Journal of Theoretical Biology, 35, 277-283.

[72]   Percy, M.J., McFerran, N.V. and Lappin, T.R.J. (2005) Disorders of Oxidised Haemoglobin. Blood Reviews, 19, 61-68.

[73]   Graham, D.J.M., Thompson, G.G., Moore, M.R. and Goldberg, A.A. (1979) The Effects of Selected Monopyrroles on Various Aspects of Heme Biosynthesis and Degradation in the Rat. Archives of Biochemistry and Biophysics, 65, 132-138.

[74]   Irvine, D.G. (1978) Pyrroles in Neuropsychiatric and Porphyric Disorders: Confirmation of Metabolic Structure and Synthesis. Life Sciences, 23, 983-990.

[75]   Pfeiffer, C.C. and Iliev, V. (1973) Pyrroluria, Urinary Mauve Factor Causes Double Deficiency of B6 and Zinc in Schizophrenics. Federation of American Societies for Experimental Biology Proceedings, 32, 276.

[76]   Saedisomeolia, A., Djalali, M., Moghadam, A.M., Ramezankhani, O. and Najmi, L. (2011) Folate and Vitamin B12 Status in Schizophrenic Patients. Journal of Research in Medical Sciences, 16, S437-S441.

[77]   Wallwork, J.C., Boltnen, J.H. and Sandstead, H.H. (1982) Zinc Deficiency Causes an Increase in Brain Norepinephrine. Journal of Nutrition, 112, 514-519.

[78]   Itzhaky, D., Amital, D., Gorden, K., Bogomolni, A., Arnson, Y. and Amital, H. (2012) Low Serum Vitamin D Concentrations in Patients with Schizophrenia. The Israel Medical Association Journal, 14, 88-92.

[79]   Baksi, S.N. and Hughes, M.J. (1982) Chronic Vitamin D Deficiency in the Weanling Rat Alters Catecholamine Metabolism in the Cortex. Brain Research, 242, 387-390.

[80]   Blum, J.W., Fischer, J.A., Hunziker, W.H., Binswanger, U., Picotti, G.B., Da Prada, M. and Guillebeau, A. (1978) Parathyroid Hormone Responses to Catecholamines and to Changes of Extracellular Calcium in Cows. Journal of Clinical Investigation, 61, 1113-1122.

[81]   Kukreja, S.C., Hargis, G.K., Bowser, N., Henderson, W.J., Fisherman, E.W. and Williams, G.A. (1975) Role of Adrenergic Stimuli in Parathyroid Hormone Secretion in Man. Journal of Clinical Endocrinology & Metabolism, 40, 478-481.

[82]   Heinrichs, R.W. and Zakzanis, K.K. (1998) Neurocognitive Deficit in Schizophrenia: A Quantitative Review of the Evidence. Neuropsychology, 12, 426-445.

[83]   McCarthy, J., Kraseski, K., Schvartz, I., Mercado, V., Daisy, N., Tobing, L. and Ryan, E. (2005) Sustained Attention, Visual Processing Speed, and IQ in Children and Adolescents with Schizophrenia Spectrum Disorder and Psychosis Not Otherwise Specified. Perceptual and Motor Skills, 100, 1097-1106.

[84]   Conklin, H.M., Curtis, C.E., Katsanis, J. and Iacono, W.G. (2000) Verbal Working Memory Impairment in Schizophrenia Patients and Their First-Degree Relatives: Evidence from the Digit Span Task. American Journal of Psychiatry, 157, 275-277.

[85]   Loberg, E.M., Hugdahl, K. and Green, M.F. (1999) Hemispheric Asymmetry in Schizophrenia: A “Dual Deficits” Model. Biological Psychiatry, 45, 76-81.

[86]   Gallinai, J., Mulert, C., Bajbouj, M., Herrmann, W.M., Schunter, J., Senkowski, D., Moukhtieva, R., Kronfeldt, D. and Winterer, G. (2002) Frontal and Temporal Dysfunction of Auditory Stimulus Processing in Schizophrenia. Neuroimage, 17, 110-127.

[87]   McCarthy, J., Kraseski, K., Schvartz, I., Mercado, V., Daisy, N., Tobing, L. and Ryan, E. (2005) Sustained Attention, Visual Processing Speed, and IQ in Children and Adolescents with Schizophrenia Spectrum Disorder and Psychosis Not Otherwise Specified. Perceptual and Motor Skills, 100, 1097-1106.

[88]   Conklin, H.M., Curtis, C.E., Katsanis, J. and Iacono, W.G. (2000) Verbal Working Memory Impairment in Schizophrenia Patients and Their First-Degree Relatives: Evidence from the Digit Span Task. American Journal of Psychiatry, 157, 275-277.

[89]   Korboot, P.J. and Damiani, N. (1976) Auditory Processing Speed and Signal Detection in Schizophrenia. Journal of Abnormal Psychology, 85, 287-295.

[90]   Videen, T.O., Daw, N.W. and Rader, R.K. (1984) The Effect of Norepinephrine on Visual Cortical Neurons in Kittens and Adult Cats. The Journal of Neuroscience, 4, 1607-1617.

[91]   Li, B.M., Mao, Z.M., Wang, M. and Mei, Z.T. (1999) Alpha-2-Noradrenergic Modulation of Prefrontal Cortical Neuronal Activity Related to Spatial Working Memory in Monkeys. Neuropsychopharmacology, 21, 601-610.

[92]   Martinez, A., Hillyard, S.A., Dias, E.C., Hagler Jr., D.J., Butler, P.D., Guilfoyle, D.N., Jalbrzikowski, M., Silipo, G. and Javitt, D.C. (2008) Magnocellular Pathway Impairment in Schizophrenia: Evidence from Functional Magnetic Resonance Imaging. The Journal of Neuroscience, 28, 7492-7500.

[93]   Adler, L.E., Gerhardt, G.A., Franks, R., Baker, N., Nagamoto, H., Drebing, C. and Freedman, R. (1990) Sensory Physiology and Catecholamines in Schizophrenia and Mania. Psychiatry Research, 31, 297-309.

[94]   Kasai, K., Nakagome, K., Itoh, K., Koshida, I., Hata, A., Iwanami, A., Fukuda, M. and Kato, N. (2002) Impaired Cortical Network for Preattentive Detection of Change in Speech Sounds in Schizophrenia: A High-Resolution Event- Related Potential Study. American Journal of Psychiatry, 159, 546-553.

[95]   Mason, P., Rimmer, M., Richman, A., Garg, G., Johnson, J. and Mottram, P.G. (2008) Middle-Ear Disease and Schizophrenia: Case-Control Study. British Journal of Psychiatry, 193, 192-196.

[96]   Stolley, P.D. and Schlesselman, J.J. (1982) Case-Control Studies: Design, Conduct, Analysis. Oxford University Press, Oxford.

[97]   Breslow, N.E. (1996) Statistics in Epidemiology: The Case-Control Study. Journal of the American Statistical Association, 91, 19-35.

[98]   Lijmer, J.G., Mol, B.W., Heisterkamp, S., Bonsei, G.J., Prins, M.H., van der Meulen, J.H.P. and Bossuyt, P.M. (1999) Empirical Evidence of Design-Related Bias in Studies of Diagnostic Tests. JAMA, 282, 1061-1066.

[99]   Marc, D.T., Ailts, J.W., Campeau, D.G., Bull, M.J. and Olson, K.L. (2011) Neurotransmitters Excreted in the Urine as Biomarkers of Nervous System Activity: Validity and Clinical Applicability. Neuroscience Biobehavioral Reviews, 35, 635-644.

[100]   Hinz, M., Stein, A., Trachte, G. and Uncini, T. (2010) Neurotransmitter Testing of the Urine: A Comprehensive Analysis. Open Access Journal of Urology, 2, 177-183.

[101]   Erdely, D.J., Elliott, M. and Phillips, B. (2011) Urine Catecholamines in Paediatrics. Archives of Disease in Childhood Education and Practice, 96, 107-111.

[102]   Grouzmann, E. and Lamine, F. (2013) Determination of Catecholamines in Plasma and Urine. Best Practice & Research Clinical Endocrinology & Metabolism, 27, 713-723.

[103]   Duffy, J.C. and Waterto, J.J. (1984) Under-Reporting of Alcohol Consumption in Sample Surveys: The Effect of Computer Interviewing in Fieldwork. British Journal of Addiction, 79, 303-308.

[104]   Eichner, E.R. and Hillman, R.S. (1973) Effect of Alcohol on Serum Folate Level. The Journal of Clinical Investigation, 52, 584-591.

[105]   Halsted, C.H. (2013) B-Vitamin Dependent Methionine Metabolism and Alcoholic Liver Disease. Clinical Chemistry and Laboratory Medicine, 5103, 457-465.

[106]   Fowler, J.S., Volkow, N.D., Wang, G.J., Pappas, N., Logan, J., MacGregor, R., Alexoff, D., Shea, C., Schlyer, D., Wolf, A.P., Warner, D., Zezulkova, I. and Cilento, R. (1966) Inhibition of Monoamine Oxidase B in the Brains of Smokers. Nature, 379, 733-736.

[107]   Trachte, G.J., Uncini, T. and Hinz, M. (2009) Both Stimulatory and Inhibitory Effects of Dietary 5-Hydroxytryptophan and Tyrosine Are Found on Urinary Excretion of Serotonin and Dopamine. Neuropsychiatric Disease and Treatment, 5, 227-235.

[108]   Anden, N.E., Butcher, S.G., Corrodi, H., Fuxe, K. and Ungerstedt, U. (1970) Receptor Activity and Turnover of Dopamine and Noradrenaline after Neuroleptics. European Journal of Pharmacology, 11, 303-314.

[109]   Maas, J.W. (1979) Neurotransmitters and Depression. Too Much, Too Little, or Too Unstable? Trends in Neurosciences, 2, 306-308.

[110]   Altar, C.A., Boyar, W.C., Wasley, A., Gerhardt, S.C., Liebman, J.M. and Wood, P.L. (1988) Dopamine Neurochemichal Profile of Atypical Antipsychotics Resembles That of D1 Antagonists. Naunyn-Schmiedeberg’s Archives of Pharmacology, 338, 162-168.

[111]   Arnsten, A.F.T. (2004) Adrenergic Targets for the Treatment of Cognitive Deficits in Schizophrenia. Psychopharmacology, 174, 25-31.