[1] Terrazas-Moreno, S. and Grossmann, I.E. (2011) A Multiscale Decomposition Method for the Optimal Planning and Scheduling of Multisite Continuous Multiproduct Plants. Chemical Engineering Science, 66, 4307-4818. http://dx.doi.org/10.1016/j.ces.2011.03.017
[2] Papageorgiou, L.G. and Pantelides, C.C. (1996) Optimal Campaign Planning/Scheduling of Multipurpose Batch/Semi- Continuous Plants. 1. Mathematical Formulation. Industrial and Engineering Chemistry Research, 35, 488-509. http://dx.doi.org/10.1021/ie950081l
[3] Karimi, I.A. and Mcdonald, C.M. (1997) Planning and Scheduling of Parallel Semicontinuous Processes. 2. Short- Term Scheduling. Industrial and Engineering Chemistry Research, 36, 2691-2700. http://dx.doi.org/10.1021/ie9609022
[4] Grossmann, I.E., Van Den Heever, S.A. and Harjunkoski, I. (2002) Discrete Optimization Methods and Their Role in the Integration of Planning and Scheduling. AIChE Symposium Series, 326, 150-168.
[5] Lin, X., Floudas, C.A., Modi, S., et al. (2002) Continuous-Time Optimization Approach for Medium-Range Production Scheduling of a Multiproduct Batch Plant. Industrial and Engineering Chemistry Research, 41, 3884-3906. http://dx.doi.org/10.1021/ie011002a
[6] Erdirik-Dogan, M. and Grossmann, I.E. (2006) A Decomposition Method for the Simultaneous Planning and Scheduling of Single-Stage Continuous Multiproduct Plants. Industrial and Engineering Chemistry Research, 45, 299-315. http://dx.doi.org/10.1021/ie050778z
[7] Soyster, A.L. (1973) Convex Programming with Set-Inclusive Constraints and Appplications to Inexact Linear Programming. Operational Research, 21, 1154-1157. http://dx.doi.org/10.1287/opre.21.5.1154
[8] Ben-Tal, A. and Nemirovski, A. (1998) Robust Convex Optimization. Mathematics of Operations Research, 4, 769- 805. http://dx.doi.org/10.1287/moor.23.4.769
[9] Ben-Tal, A. and Nemirovski, A. (1999) Robust Solutions of Linear Programs. Operation, 25, 1-13.
[10] Ben-Tal, A. and Nemirovski, A. (2000) Robust Solutions of Linear Programming Problems Contaminated with Uncertain Data. Methematical Programming, 88, 411-424. http://dx.doi.org/10.1007/PL00011380
[11] Ben-Tal, A. and Nemirovski, A. (2002) Robust Optimization: Methodology and Applications. Math. Program. Ser. B, 92, 453-480. http://dx.doi.org/10.1007/s101070100286
[12] Lin, X., Janak, S.L. and Floudas, C.A. (2004) A New Robust Optimization Approach for Scheduling under Uncertainty: I. Bounded Uncertainty. Computers & Chemical Engineering, 6, 1069-1085. http://dx.doi.org/10.1016/j.compchemeng.2003.09.020
[13] Janak, S.L., Lin, X. and Floudas, C.A. (2007) A New Robust Optimization Approach for Scheduling under Uncertainty: II. Uncertainty with Known Probability Distribution. Computers & Chemical Engineering, 3, 171-195. http://dx.doi.org/10.1016/j.compchemeng.2006.05.035
[14] Verderame, P.M. and Floudas, C.A. (2009) Operational Planning of Large-Scale Industrial Batch Plants under Demand Due Date and Amount Uncertainty. I. Robust Optimization Framework. Industrial & Engineering Chemistry Research, 48, 7214-7231. http://dx.doi.org/10.1021/ie9001124
[15] Li, J., Verderame, P.M. and Floudas, C.A. (2012) Operational Planning of Large-Scale Continuous Processes: Deterministic Planning Model and Robust Optimization for Demand Amount and Due Date Uncertainty. Industrial & Engineering Chemistry Research, 51, 4347-4362. http://dx.doi.org/10.1021/ie202670a
[16] Li, Z., Ding, R. and Floudas, C.A. (2011) A Comparative Theoretical and Computational Study on Robust Counterpart Optimization: I. Robust Linear Optimization and Robust Mixed Integer Linear Optimization. American Chemical Society, 50, 10567-10603.