IJG  Vol.6 No.1 , January 2015
Numerical Modeling of the Time Evolution of Super-Small-Scale Irregularities in the Near-Earth Rarefied Plasma
ABSTRACT
The time evolution of the magnetic field aligned super-small-scale irregularities in the concentration of charged particles, existing in the near-Earth rarefied plasma, is studied with the help of the model simulation. A new version of the two-dimensional mathematical model, developed earlier in the Polar Geophysical Institute, is utilized to investigate the temporal history of the irregularity with circular cross section, created initially in the near-Earth plasma. The utilized model is based on a numerical solution of the Vlasov-Poisson system of equations, with the Vlasov equations describing the distribution functions of charged particles and the Poisson equation governing the self-consistent electric field. The results of simulation indicate that the mobility of the positive ions ought to influence essentially on the time evolution of the super-small-scale irregularities in the concentration of charged particles, existing in the near-Earth rarefied plasma.

Cite this paper
Mingalev, O. , Melnik, M. and Mingalev, V. (2015) Numerical Modeling of the Time Evolution of Super-Small-Scale Irregularities in the Near-Earth Rarefied Plasma. International Journal of Geosciences, 6, 67-78. doi: 10.4236/ijg.2015.61005.
References
[1]   Ivanov-Kholodny, G.S., Goncharova, E.E., Shashun’kina, V.M. and Yudovich, L.A. (1987) Daily Variations in the Zonal Structure of the Ionospheric F Region at Low Latitudes in February 1980. Geomagnetism and Aeronomia, 27, 722-727.

[2]   Moffet, R.J. and Quegan, S. (1983) The Mid-Latitude through in the Electron Concentration of the Ionospheric F-Layer: A Review of Observations and Modelling. Journal of Atmospheric and Terrestrial Physics, 45, 315-343. http://dx.doi.org/10.1016/S0021-9169(83)80038-5

[3]   Buchau, J., Reinisch, B.W., Weber, E.T. and Moore, J.G. (1983) Structure and Dynamics of the Winter Polar Cap F Region. Radio Science, 18, 995-1010. http://dx.doi.org/10.1029/RS018i006p00995

[4]   Robinson, R.W., Tsunoda, R.T., Vickrey, J.F. and Guerin, L. (1985) Sources of F Region Ionization Enhancement in the Nighttime Auroral Zone. Journal of Geophysical Research, 90, 7533-7546.
http://dx.doi.org/10.1029/JA090iA08p07533

[5]   Tsunoda, R.T. (1988) High-Latitude F Region Irregularities: A Review and Synthesis. Review of Geophysics, 26, 719-760. http://dx.doi.org/10.1029/RG026i004p00719

[6]   Besprozvannaya, A.S., Zherebtsov, G.A., Pirog, O.M. and Shchuka, T.I. (1988) Dynamics of Electron Density in the Auroral Zone during the Magnetospheric Substorm on December 22, 1982. Geomagnetism and Aeronomia, 28, 66-70.

[7]   Muldrew, D.B. and Vickrey, J.F. (1982) High-Latitude F Region Irregularities Observed Simultaneously with ISIS1 and Chatanika Radar. Journal of Geophysical Research, 87, 8263-8272.
http://dx.doi.org/10.1029/JA087iA10p08263

[8]   Basu, S., Mac Kenzie, E., Basu, S., Fougere, P.F., Maynard, N.C., Coley, W.R., Hanson, W.B., Winningham, J.D., Sugiura, M. and Hoegy, W.R. (1988) Simultaneous Density and Electric Field Fluctuation Spectra Associated with Velocity Shears in the Auroral Oval. Journal of Geophysical Research, 93, 115-136. http://dx.doi.org/10.1029/JA093iA01p00115

[9]   Martin, E. and Aarons, J. (1977) F layer Scintillations and the Aurora. Journal of Geophysical Research, 82, 2717-2722. http://dx.doi.org/10.1029/JA082i019p02717

[10]   Fremouw, E.J., Rino, C.L., Livingston, R.C. and Cousins, M.C. (1977) A Persistent Subauroral Scintillations Enhancement Observed in Alaska. Geophysical Research Letters, 4, 539-542.
http://dx.doi.org/10.1029/GL004i011p00539

[11]   Kersley, L., Russell, C.D. and Pryse, S.E. (1989) Scintillation and EISCAT Investigations of Gradient-Drift Irregularities in the High Latitude Ionosphere. Journal of Atmospheric and Terrestrial Physics, 51, 241-247. http://dx.doi.org/10.1016/0021-9169(89)90075-5

[12]   Pryse, S.E., Kersley, L. and Russell, C.D. (1991) Scintillation near the F Layer Trough over Northern Europe. Radio Science, 26, 1105-1114. http://dx.doi.org/10.1029/91RS00490

[13]   Greenwald, R.A. (1974) Diffuse Radar Aurora and the Gradient Drift Instability. Journal of Geophysical Research, 79, 4807-4810. http://dx.doi.org/10.1029/JA079i031p04807

[14]   Dimant, Ya.S., Oppenheim, M.M. and Milikh, G.M. (2009) Meteor Plasma Trails: Effects of External Electric Field. Annales Geophysicae, 27, 279-296. http://dx.doi.org/10.5194/angeo-27-279-2009

[15]   Livingston, R.C., Rino, C.L., Owen, J. and Tsunoda, R.T. (1982) The Anisotropy of High Latitude Nighttime F Region Irregularities. Journal of Geophysical Research, 87, 10519-10526.
http://dx.doi.org/10.1029/JA087iA12p10519

[16]   Meltz, G. and LeLevier, R.E. (1970) Heating the F-Region by Deviative Absorption of Radio Waves. Journal of Geophysical Research, 75, 6406-6416. http://dx.doi.org/10.1029/JA075i031p06406

[17]   Perkins, F.W. and Roble, R.G. (1978) Ionospheric Heating by Radio Waves: Predictions for Arecibo and the Satellite Power Station. Journal of Geophysical Research, 83, 1611-1624.
http://dx.doi.org/10.1029/JA083iA04p01611

[18]   Mantas, G.P., Carlson, H.C. and La Hoz, C.H. (1981) Thermal Response of F-Region Ionosphere in Artificial Modification Experiments by HF Radio Waves. Journal of Geophysical Research, 86, 561-574.
http://dx.doi.org/10.1029/JA086iA02p00561

[19]   Bernhardt, P.A. and Duncan, L.M. (1982) The Feedback-Diffraction Theory of Ionospheric Heating. Journal of Atmospheric and Terrestrial Physics, 44, 1061-1074.
http://dx.doi.org/10.1016/0021-9169(82)90018-6

[20]   Hansen, J.D., Morales, G.J. and Maggs, J.E. (1989) Daytime Saturation of Thermal Cavitons. Journal of Geophysical Research, 94, 6833-6840. http://dx.doi.org/10.1029/JA094iA06p06833

[21]   Vas’kov, V.V., Dimant, Ya.S. and Ryabova, N.A. (1993) Magnetospheric Plasma Thermal Perturbations Induced by Resonant Heating of the Ionospheric F-Region by High-Power Radio Wave. Advances in Space Research, 13, 25-33. http://dx.doi.org/10.1016/0273-1177(93)90047-F

[22]   Mingaleva, G.I. and Mingalev, V.S. (1997) Response of the Convecting High-Latitude F Layer to a Powerful HF Wave. Annales Geophysicae, 15, 1291-1300. http://dx.doi.org/10.1007/s00585-997-1291-8

[23]   Mingaleva, G.I. and Mingalev, V.S. (2002) Modeling the Modification of the Nighttime High-Latitude F-Region by Powerful HF Radio Waves. Cosmic Research, 40, 55-61.
http://dx.doi.org/10.1023/A:1014299902287

[24]   Mingaleva, G.I. and Mingalev, V.S. (2003) Simulation of the Modification of the Nocturnal High-Latitude F Layer by Powerful HF Radio Waves. Geomagnetism and Aeronomy, 43, 816-825.

[25]   Mingaleva, G.I., Mingalev, V.S. and Mingalev, I.V. (2003) Simulation Study of the High-Latitude F-Layer Modification by Powerful HF Waves with Different Frequencies for Autumn Conditions. Annales Geophysicae, 21, 1827-1838. http://dx.doi.org/10.5194/angeo-21-1827-2003

[26]   Mingaleva, G.I., Mingalev, V.S. and Mingalev, I.V. (2009) Model Simulation of the Large-Scale High-Latitude F-Layer Modification by Powerful HF Waves with Different Modulation. Journal of Atmospheric and Solar-Terrestrial Physics, 71, 559-568. http://dx.doi.org/10.1016/j.jastp.2008.11.007

[27]   Mingaleva, G.I., Mingalev, V.S. and Mingalev, O.V. (2012) Simulation Study of the Large-Scale Modification of the Mid-Latitude F-Layer by HF Radio Waves with Different Powers. Annales Geophysicae, 30, 1213-1222. http://dx.doi.org/10.5194/angeo-30-1213-2012

[28]   Mingaleva, G.I. and Mingalev, V.S. (2013) Simulation Study of the Modification of the High-Latitude Ionosphere by Powerful High-Frequency Radio Waves. Journal of Computations & Modelling, 3, 287-309.

[29]   Mingaleva, G.I. and Mingalev, V.S. (2014) Model Simulation of Artificial Heating of the Daytime High-Latitude F-Region Ionosphere by Powerful High-Frequency Radio Waves. International Journal of Geosciences, 5, 363-374.

[30]   Eliasson, B. and Stenflo, L. (2008) Full-Scale Simulation Study of the Initial Stage of Ionospheric Turbulence. Journal of Geophysical Research, 113, Article ID: A02305.
http://dx.doi.org/10.1029/2007JA012837

[31]   Mingalev, O.V., Mingalev, I.V. and Mingalev, V.S. (2006) Two-Dimensional Numerical Simulation of Dynamics of Small-Scale Irregularities in the Near-Earth Plasma. Cosmic Research, 44, 398-408.
http://dx.doi.org/10.1134/S0010952506050030

[32]   Mingalev, O.V., Mingaleva, G.I., Melnik, M.N. and Mingalev, V.S. (2010) Numerical Modeling of the Behavior of Super-Small-Scale Irregularities in the Ionospheric F2 Layer. Geomagnetism and Aeronomy, 50, 643-654. http://dx.doi.org/10.1134/S0016793210050117

[33]   Mingalev, O.V., Mingaleva, G.I., Melnik, M.N. and Mingalev, V.S. (2011) Numerical Simulation of the Time Evolution of Small-Scale Irregularities in the F-Layer Ionospheric Plasma. International Journal of Geophysics, 2011, Article ID: 353640. http://dx.doi.org/10.1155/2011/353640

[34]   Wong, A.Y., Santoru, J., Darrow, C., Wang, L. and Roederer, J.G. (1983) Ionospheric Cavitons and Related Nonlinear Phenomena. Radio Science, 18, 815-830. http://dx.doi.org/10.1029/RS018i006p00815

[35]   Hockney, R.W. and Eastwood, J.W. (1981) Computer Simulation Using Particles. McGraw-Hill, New York.

[36]   Birdsall, C.K. and Langdon, A.B. (1985) Plasma Physics via Computer Simulation. McGraw-Hill, New York.

 
 
Top