ABB  Vol.6 No.1 , January 2015
The Principle of Polysaccharide Gels
Author(s) Masakuni Tako1,2
ABSTRACT
For several decades attention has been directed to natural polysaccharide gels and synthesized polymer gels. The structure-function relationships at molecular level in water of polysaccharides, κ-carrageenan, ι-carrageenan, agarose (agar), and gellan family of polysaccharides (gellan, welan, rhamsan, S-657, deacetylated rhamsan and native gellan gum), which are industrially useful polysaccharides extracted from family of red seaweeds and bacteria, in principle are discussed on the view point of rheological aspects. The polysaccharide molecules (0.1% - 1.0%) play a dominant role in the center of the tetrahedral cavities occupied by water molecules (99.0% - 99.9%), and the arrangement is similar to a tetrahedral structure in a gelation process. The cage and hydrophobic effect play thermal dynamically dominant role in gelation process which gives lowest entropy to electrons of sugar residues. Though the chemical structure of these polysaccharides similar each other, their rheological (gelling) characteristics are quite different. Many investigations about the gelling properties of the polysaccharides have been undertaken to elucidate the structure-function relationship, but no other researchers have established mechanism at the molecular level. There is consistency in our investigations. Thus, the rheological analysis is one of significant methods for understanding the structure-function relationship of polysaccharides in aqueous media. The discussion provides many important information not only in academic field, but also in industrial one, such as food, cosmetic, pharmaceutical, drug delivery and tissue industries, and biotechnology.

Cite this paper
Tako, M. (2015) The Principle of Polysaccharide Gels. Advances in Bioscience and Biotechnology, 6, 22-36. doi: 10.4236/abb.2015.61004.
References
[1]   Rinaudo, M. (2008) Main Properties and Current Applications of Some Polysaccharides as Biomaterials. Polymer International, 57, 397-430.
http://dx.doi.org/10.1002/pi.2378

[2]   Laurienzo, P. (2010) Marine Polysaccharides in Pharmaceutical Applications. Marine Drug, 8, 2435-2465.
http://dx.doi.org/10.3390/md8092435

[3]   Lee, K.Y. and Mooney, D.J. (2001) Hydrogels for Tissue Engineering. Chemical Reviews, 101, 1869-1879.

[4]   Tako, M., Nagahama, T. and Nomura, D. (1977) Flow Characteristics of Viscous Polysaccharide Produced by Coryneform Bacteria Strain C-8. Nippon Nogeikagaku Kaishi, 51, 397-403.
http://dx.doi.org/10.1271/nogeikagaku1924.51.6_397

[5]   Tako, M. and Nakamura, S. (1986) Indicative Evidence for a Conformational Transition in κ-Carrageenan from Studies of Viscosity-Shear Rate Dependence. Carbohydrate Research, 155, 200-205.
http://dx.doi.org/10.1016/S0008-6215(00)90146-0

[6]   Tako, M. and Nakamura, S. (1986) Synergistic Interaction between κ-Carrageenan and Locust Bean Gum in Aqueous Media. Agricultural Biological Chemistry, 50, 2817-2822.
http://dx.doi.org/10.1271/bbb1961.50.2817

[7]   Qi, Z.-Q., Tako, M. and Toyama, S. (1998) Molecular Origin for Rheological Characteristics of κ-Carrageenan Isolated from Ibaranori (Hypnea charoides). Journal of Applied Glycoscience, 44, 331-336.

[8]   Tako, M., Nakamura, S. and Kohda, Y. (1987) Indicative Evidence for a Conformational Transition in ι-Carrageenan. Carbohydrate Research, 161, 247-253.
http://dx.doi.org/10.1016/S0008-6215(00)90081-8

[9]   Lin, H.-L., Tako, M. and Hongo, F. (2000). Molecular Origin for Rheological Characteristics of ι-Carrageenan Isolated from Togekirinsai (Eucheumaserra). Food Science and Technology Research, 43, 493-498.

[10]   Tako, M. and Nakamura, S. (1988) Gelation Mechanism of Agarose. Carbohydrate Research, 180, 277-284.
http://dx.doi.org/10.1016/0008-6215(88)80084-3

[11]   Tako, M., Sakae, A. and Nakamura, S. (1989) Rheological Properties of Gellan Gum in Aqueous Media. Agricultural Biological Chemistry, 53, 771-776.
http://dx.doi.org/10.1271/bbb1961.53.771

[12]   Tako, M., Teruya, T., Tamaki, Y. and Konishi, T. (2009) Molecular Origin for Rheological Characteristics of Native Gellan Gum. Colloid and Polymer Science, 287, 1445-1454.
http://dx.doi.org/10.1007/s00396-009-2112-2

[13]   Tako, M. and Hizukuri, S. (1995) Evidence for Conformational Transition in Amylose. Journal of Carbohydrate Chemistry, 14, 613-622.
http://dx.doi.org/10.1080/07328309508005362

[14]   Tamaki, Y., Konishi, T. and Tako, M. (2011) Gelation and Retrogradation Mechanism of Wheat Amylose. Materials, 4, 1763-1775.
http://dx.doi.org/10.3390/ma4101763

[15]   Tako, M. and Hanashiro, I. (1997) Evidence for a Conformational Transition in Curdlan. Polymer Gels & Networks, 5, 241-250.
http://dx.doi.org/10.1016/S0966-7822(96)00036-6

[16]   Tako, M. and Kohda, Y. (1997) Calcium Induced Association Characteristics of Alginate. Journal of Applied Glycoscience, 44, 153-159.

[17]   Teruya, T., Tamaki, Y., Konishi, T. and Tako, M. (2010) Rheological Characteristics of Alginate Isolated from Commercially Cultured Nemacystus decipiens (Itomozuku). Journal of Applied Glycoscience, 57, 7-12.
http://dx.doi.org/10.5458/jag.57.7

[18]   Tako, M., Tohma, S., Taira, T. and Ishihara, M. (2003) Gelation Mechanism of Deacetylated Rhamsan Gum. Carbohydrate Polymers, 54, 279-285.
http://dx.doi.org/10.1016/S0144-8617(03)00029-8

[19]   Tako, M. (2000) Structural Principles of Polysaccharide Gels. Journal of Applied Glycoscience, 47, 49-53.
http://dx.doi.org/10.5458/jag.47.49

[20]   Tako, M. and Hizukuri, S. (1997) Molecular Origin for Thermal Stability of Rice Amylopectin. Journal of Carbohydrate Chemistry, 16, 655-666.

[21]   Tako, M. (1999) Molecular Origin for Thermal Stability of Waxy Rice Starch. Starch/Starke, 48, 414-417.

[22]   Tako, M. and Hizukuri, S. (2000) Molecular Origin for Thermal Stability of Koshihikari Rice Amylopectin. Food Research International, 33, 35-40.
http://dx.doi.org/10.1016/S0963-9969(00)00021-1

[23]   Tako, M. and Hizukuri, S. (1999) Gelatinization Mechanism of Rice Starch. Journal of Carbohydrate Chemistry, 18, 573-584.
http://dx.doi.org/10.1080/07328309908544020

[24]   Tako, M. (2000) Gelatinization Characteristics of Rice Starch. Journal of Applied Glycoscience, 47, 187-192.
http://dx.doi.org/10.5458/jag.47.187

[25]   Tako, M. and Hizukuri, S. (2003) Gelatinization Mechanism of Potato Starch. Carbohydrate Polymers, 48, 397-401.
http://dx.doi.org/10.1016/S0144-8617(01)00287-9

[26]   Tako, M., Tamaki, Y., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2008) Gelatinization and Retrogradation Characteristics of Wheat (Rosella) Starch. Food Research International, 41, 797-802.
http://dx.doi.org/10.1016/j.foodres.2008.07.002

[27]   Tako, M., Tamaki, Y., Teruya, T., Konishi, T., Shibanuma, K., Hanashiro, I. and Takeda, Y. (2009) Gelatinization Characteristics of Halberd Wheat Starch. Starch/Starke, 61, 275-281.

[28]   Tako, M. and Hizukuri, S. (2000) Retrogradation Mechanism of Rice Starch. Cereal Chemistry, 77, 473-477.

[29]   Tako, M., Tamaki, Y., Teruya, T. and Takeda, Y. (2014) The Principles of Starch Gelatinization and Retrogradation. Food Nutrition and Sciences, 5, 280-291.
http://dx.doi.org/10.4236/fns.2014.53035

[30]   Tako, M. and Kiriaki, M. (1990) Rheological Properties of Welan Gum in Aqueous Media. Agricultural Biological Chemistry, 54, 3079-3084.
http://dx.doi.org/10.1271/bbb1961.54.3079

[31]   Tako, M. (1993) Molecular Origin for Thermal Stability of Rhamsan Gum in Aqueous Media. Bioscience Biotechnology Biochemistry, 57, 1182-1184.
http://dx.doi.org/10.1271/bbb.57.1182

[32]   Tako, M. (1993) Molecular Origin for the Thermal Stability of Welan and Rhamsan Gum. In: Yalpani, M., Ed., Carbohydrate and Carbohydrate Polymers, ATL Press, Inc. Science and Publishers, Atlanta, 206-215.

[33]   Tako, M. (1994) Molecular Origin for Thermal Stability of S-657 Polysaccharide Produced by Xanthomonas ATCC 53159. Polymer Gels & Networks, 2, 91-104.
http://dx.doi.org/10.1016/0966-7822(94)90029-9

[34]   Tako, M., Nagahama, T. and Nomura, D. (1977) Non-Newtonian Behavior and Dynamic Viscoelasticity of Xanthan Gum. Nippon Nogeikagaku Kaishi, 51, 513-517.
http://dx.doi.org/10.1271/nogeikagaku1924.51.8_513

[35]   Tako, M. and Nakamura, S. (1984) Rheological Properties of Deacetylated Xanthan Gum in Aqueous Media. Agricultural Biological Chemistry, 48, 2987-2993.
http://dx.doi.org/10.1271/bbb1961.48.2987

[36]   Tako, M. and Nakamura, S. (1987) Rheological Properties of Ca Salt of Xanthan Gum in Aqueous Media. Agricultural Biological Chemistry, 51, 2919-2923.
http://dx.doi.org/10.1271/bbb1961.51.2919

[37]   Tako, M. and Nakamura, S. (1988) Rheological Properties of Depyruvated Xanthan Gum in Aqueous Media. Agricultural Biological Chemistry, 52, 1585-1586.
http://dx.doi.org/10.1271/bbb1961.52.1585

[38]   Tako, M. and Nakamura, S. (1989) Evidence for Intramolecular Associations in Xanthan Molecules in Aqueous Media. Agricultural Biological Chemistry, 53, 1941-1946.
http://dx.doi.org/10.1271/bbb1961.53.1941

[39]   Tako, M. (1992) Molecular Origin for Rheological Characteristics of Xanthan Gum. ACS Symposium Series, 489, 268-281.

[40]   Tako, M., Asato, A. and Nakamura, S. (1984) Rheological Aspects of Intermolecular Interaction between Xanthan and Locust Bean Gum in Aqueous Media. Agricultural Biological Chemistry, 48, 2995-3000.
http://dx.doi.org/10.1271/bbb1961.48.2995

[41]   Tako, M. and Nakamura, S. (1986) Synergistic Interaction between Xanthan and D-Galacto-D-Mannan. FEBS Letters, 204, 33-36.

[42]   Tako, M. (1992) Synergistic Interaction between Xanthan and Galactomannan. Journal of Carbohydrate Chemistry, 10, 619-623.
http://dx.doi.org/10.1080/07328309108543936

[43]   Tako, M. and Nakamura, S. (1985) Synergistic Interaction between Xanthan and Guar Gum. Carbohydrate Research, 138, 207-213. http://dx.doi.org/10.1016/0008-6215(85)85104-1

[44]   Tako, M. (1991) Synergistic Interaction between Xanthan and Tara-Bean Gum. Carbohydrate Polymers, 16, 227-239.
http://dx.doi.org/10.1016/0144-8617(91)90111-O

[45]   Pakdee, P., Tako, M., Yokohari, T., Kinjyo, K., Hongo, F. and Yaga, S. (1995) Synergistic Interaction between Xanthan and Galactomannan Isolated from Leucaena leucocephala de Wit. Journal of Applied Glycoscience, 42, 105-113.

[46]   Tako, M., Teruya, T., Tamaki, Y. and Ohkawa, K. (2010) Co-Gelation Mechanism of Xanthan and Galactomannan. Colloid and Polymer Science, 288, 1161-1166.
http://dx.doi.org/10.1007/s00396-010-2242-6

[47]   Tako, M. (1992) Synergistic Interaction between Xanthan and Konjac Glucomannan in Aqueous Media. Bioscience Biotechnology Biochemistry, 56, 1188-1192.
http://dx.doi.org/10.1271/bbb.56.1188

[48]   Tako, M. (1993) Binding Sites for D-Mannose-Specific Interaction between Xanthan and Galactomannan, and Glucomannan. Colloids and Surface B: Biointerfaces, 1, 125-131.
http://dx.doi.org/10.1016/0927-7765(93)80043-X

[49]   Tako, M. and Tamaki, H. (2005) Molecular Origin for the Thermal Stability of S-88 Gum Produced by Pseudomonas ATCC 31554. Polymer Journal, 37, 498-505.
http://dx.doi.org/10.1295/polymj.37.498

[50]   Tako, M. (1996) Molecular Origin for Thermal Stability of Schizophyllan. Polymer Gels & Networks, 4, 303-313.
http://dx.doi.org/10.1016/0966-7822(96)00016-0

[51]   Rees, D.A. (1972) Shapely Polysaccharides. Biochemical Journal, 126, 257-273.

[52]   Morris, V.J. and Chilvers, G.R. (1983) Rheological Studies of Specific Cation Forms of Kappa Carrageenan Gels. Carbohydrate Polymers, 3, 129-141.
http://dx.doi.org/10.1016/0144-8617(83)90003-6

[53]   Rochas, C. and Rinaudo, M. (1984) Mechanism of Gel Formation in κ-Carrageenan. Biopolymers, 23, 735-745.
http://dx.doi.org/10.1002/bip.360230412

[54]   Hagerth, A., Nilsson, S. and Sundelof, L.-O. (1999) Gel-Sol Transition in κ-Carrageenan Systems: Microviscosity of Hydrophobic Microdomains, Dynamic Rheology and Molecular Conformation. International Journal Biological Macromolecules, 26, 69-76.
http://dx.doi.org/10.1016/S0141-8130(99)00065-3

[55]   Chen, Y., Liao, M.-L. and Dunstan, D.E. (2002) The Rheology of K+-κ-Carrageenan as a Weak Gel. Carbohydrate Polymers, 50, 109-116.
http://dx.doi.org/10.1016/S0144-8617(02)00009-7

[56]   Kozbial, A. and Li, L. (2014) Study on the Friction of κ-Carrageenan in Air and Aqueous Environments. Materials Science Engineering: C, 36, 173-179.
http://dx.doi.org/10.1016/j.msec.2013.12.003

[57]   Frank, H.S. and Wen, W.Y. (1957) Ion-Solvent Interaction. Structural Aspects of Ion-Solvent Interaction in Aqueous Solutions: A Suggested Picture of Water Structure. Discussion Faraday Society, 24, 133-140.
http://dx.doi.org/10.1039/df9572400133

[58]   Kaminsky, M. (1957) Ion-Solvent Interaction and the Viscosity of Strong-Electrolyte Solutions. Discussion Faraday Society, 24, 171-179.
http://dx.doi.org/10.1039/df9572400171

[59]   Arnott, S., Scott, W.E., Rees, D.A. and McNab, C.G.A. (1974) i-Carrageenan: Molecular Structure and Packing of Polysaccharide Double Helices in Oriented Fibres of Divalent Cation Salts. Journal of Molecular Biology, 90, 253-267.
http://dx.doi.org/10.1016/0022-2836(74)90371-4

[60]   Morris, E.R., Rees, D.A. and Robinson, G. (1980) Cation-Specific Aggregation of Carrageenan Helices: Domain Model of Polymer Gel Structure. Journal of Molecular Biology, 138, 349-362.
http://dx.doi.org/10.1016/0022-2836(80)90291-0

[61]   Norton, I.T., Goodall, D.M., Morris, E.R. and Rees, D.A. (1983) Dynamics of Cation-Induced Conformational Ordering in Solution of Segmented Iota-Carrageenan. Journal of Chemical Society, Faraday Transaction, 79, 2501-2515.
http://dx.doi.org/10.1039/f19837902501

[62]   Ridout, M.J., Garza, S., Brownsey, G.J. and Morris, V.J. (1996) Mixed Iota-Kappa Carrageenan Gels. Internal Journal of Biological Macromolecules, 18, 5-8.
http://dx.doi.org/10.1016/0141-8130(95)01037-8

[63]   Janaswamy, S. and Chandrasekaran, R. (2003) Effect of Calcium Ions on the Organization of Iota-Carrageenan Helices and X-Ray Investigation. Carbohydrate Research, 337, 523-535.
http://dx.doi.org/10.1016/S0008-6215(02)00017-4

[64]   Thrimawithana, T.R., Young, S., Dunston, D.E. and Alany, R.G. (2010) Textures and Rheological Characterization of Kappa- and Iota-Carrageenan in the Presence of Counter Ions. Carbohydrate Polymers, 82, 69-77.
http://dx.doi.org/10.1016/j.Carbpol.2010.04.024

[65]   Patel, B.K., Campanella, O.H. and Janaswamy, S. (2013) Impact of Urea on the Three-Dimensional Structure, Viscosity and Thermal Behavior of Iota-Carrageenan. Carbohydrate Polymers, 92, 1873-1879.
http://dx.doi.org/10.1016/j.carbpol.2012.11.026

[66]   Arnott, S., Fulmer, A., Scott, W.E., Dea, I.C.M., Moorhouse, R. and Rees, D.A. (1974) The Agarose Double Helix and Its Function in Agarose Gel Structure. Journal of Molecular Biology, 90, 269-284.
http://dx.doi.org/10.1016/0022-2836(74)90372-6

[67]   Mohammed, Z.H., Hember, M.W.N., Richardson, R.K. and Morris, E.R. (1998) Kinetic and Equilibrium Processes in the Formation and Melting of Agarose Gels. Carbohydrate Polymers, 36, 15-26.
http://dx.doi.org/10.1016/S0144-8617(98)00011-3

[68]   Cuatrecasas, P., Wilchek, M. and Anfinsen, C.B. (1968) Selective Enzyme Purification by Affinity Chromatography. Proceedings of the National Academy of Sciences of the United States of America, 61, 636-643.
http://dx.doi.org/10.1073/pnas.61.2.636

[69]   Yon, R.J. (1972) Chromatography of Lipophilic Proteins on Adsorbents Containing Mixed Hydrophobic and Ionic Groups. Biochemical Journal, 126, 765-767.

[70]   Gamini, A., Toffanin, R., Murano, E. and Rizzo, R. (1997) Hydrogen Bonding and Conformation of Agarose in Methyl Sulfoxide and Aqueous Solutions Investigated by 1H and 13C NMR Spectroscopy. Carbohydrate Research, 304, 293-302.
http://dx.doi.org/10.1016/S0008-6215(97)00232-2

[71]   Baird, J.K., Sandford, P.A. and Cottrell, I.W. (1983) Industrial Applications of Some New Microbial Polysaccharides. Biotechnology, 1, 778-783.
http://dx.doi.org/10.1038/nbt1183-778

[72]   Sandford, P.A., Cottrell, I.W. and Pettitt, D.J. (1984) Microbial Polysaccharides: New Products and Their Commercial Applications. Pure and Applied Chemistry, 56, 879-892.
http://dx.doi.org/10.1351/pac198456070879

[73]   O’Neill, M.A., Selvendran, R.R. and Morris, V.J. (1983) Structure of the Acidic Extracellular Gelling Polysaccharide Produced by Pseudomonas elodea. Carbohydrate Research, 124, 123-133.
http://dx.doi.org/10.1016/0008-6215(83)88360-8

[74]   Jansson, P.-E., Lindberg, B. and Sandford, P.A. (1983) Structural Studies of Gellan Gum, an Extracellular Polysaccharide Elaborated by Pseudomonas elodea. Carbohydrate Research, 124, 135-139.
http://dx.doi.org/10.1016/0008-6215(83)88361-X

[75]   Kuo, M.-S., Mort, A.J. and Dell, A. (1987) Identification and Location of L-Glycerate, an Unusual Acyl Substituent in Gellan Gum. Carbohydrate Research, 156, 173-187.
http://dx.doi.org/10.1016/S0008-6215(00)90109-5

[76]   Upstill, C., Atkins, E.D.T. and Attwool, P.T. (1986) Helical Conformation of Gellan Gum. International Journal of Biological Macromolecules, 8, 275-288.
http://dx.doi.org/10.1016/0141-8130(86)90041-3

[77]   Grasdalen, H. and Smidsrod, O. (1987) Gelation of Gellan Gum. Carbohydrate Polymers, 7, 371-393.
http://dx.doi.org/10.1016/0144-8617(87)90004-X

[78]   Chandrasekaran, R., Pulgjaner, L.C., Joyce, K.L. and Arnott, S. (1988) Cation Interaction in Gellan: An X-Ray Study of the Potassium Salt. Carbohydrate Research, 181, 23-40.
http://dx.doi.org/10.1016/0008-6215(88)84020-5

[79]   Lee, E.J. and Chandrasekaran, R. (1991) X-Ray and Computer Modeling Studies on Gellan-Related Polymers: Molecular Structures of Welan, S-657, and Rhamsan. Carbohydrate Research, 214, 11-24.
http://dx.doi.org/10.1016/S0008-6215(00)90526-3

[80]   Morris, E.R., Go-thard, M.G.E., Hember, M.W.N., Manning, C.E. and Robinson, G. (1996) Conformation and Rheological Transitions of Welan, Rhamsan and Acylated Gellan. Carbohydrate Polymers, 30, 165-175.
http://dx.doi.org/10.1016/S0144-8617(96)00059-8

[81]   Jansson, P.-E., Lindberg, B. and Wildmalm, G. (1985) Structural Studies of a Polysaccharide (S-130) Elaborated by Alcaligenes ATCC 31555. Carbohydrate Research, 139, 217-223.
http://dx.doi.org/10.1016/0008-6215(85)90022-9

[82]   Jansson, P.-E., Lindberg, B., Lindberg, J. and Maekawa, E. (1986) Structural Studies of a Polysaccharide (S-194) Elaborated by Alcaligenes ATCC 31961. Carbo-hydrate Research, 156, 157-163.
http://dx.doi.org/10.1016/S0008-6215(00)90107-1

[83]   Moorhouse, R. (1987) Structure Property Relationship of a Family of Microbial Polysaccharides. In: Yalpani, M., Ed., Industrial Polysaccharides, Elsevier Science Publisher, Amsterdam, 187-206.

[84]   Chowdhury, T.A., Lindberg, B., Lindouist, U. and Baird, J. (1987) Structure Studies of an Extracellular Polysaccharide, S-657, Elaborated by Xanthomonas ATCC 53159. Carbohydrate Research, 164, 117-122.
http://dx.doi.org/10.1016/0008-6215(87)80124-6

 
 
Top