[1] Mukhopadhyay, P. and Gupta, R.K. (2012) Graphite, Graphene, and Their Polymer Nanocomposites. CRC, Boca Raton. http://dx.doi.org/10.1201/b13051
[2] Rosen-Kligvasser, J., Suckeveriene, R.Y., Tchoudakov, R. and Narkis, M. (2013) A Novel Methodology for Controlled Migration of Antifog from Thin Polyolefin Films. Polymer Engineering & Science, 54, 2023-2028. http://dx.doi.org/10.1002/pen.23755
[3] Peng, R., Wang, Y., Tang, W., Yang, Y. and Xie, X. (2013) Progress in Imidazolium Ionic Liquids Assisted Fabrication of Carbon Nanotube and Graphene Polymer Composites. Polymers, 5, 847-872. http://dx.doi.org/10.3390/polym5020847
[4] Fakirov, S. (2013) Nano- and Microfibrillar Single-Polymer Composites: A Review. Macromolecular Materials and Engineering, 298, 9-32.
http://dx.doi.org/10.1002/mame.201200226
[5] Byrne, M.T. and Gun’ko, Y.K. (2010) Recent Advances in Research on Carbon Nanotube-Polymer Composites. Advanced Materials, 22, 1672-1688.
http://dx.doi.org/10.1002/adma.200901545
[6] Paul, D.R. and Robeson, L.M. (2008) Polymer Nanotechnology: Nanocomposites. Polymer, 49, 3187-3204. http://dx.doi.org/10.1016/j.polymer.2008.04.017
[7] Suckeveriene, R.Y., Mechrez, G., Filiba, H.O., Mosheev, S. and Narkis, M. (2012) Synthesis of Hybrid Polyaniline/ Carbon Nanotubes Nanocomposites in Toluene by Dynamic Interfacial Inverse Emulsion Polymerization under Sonication. Journal of Applied Polymer Science, 128, 2129-2135.
[8] Geim, A.K. and Novoselov, K.S. (2007) The Rise of Graphene. Nature Materials, 6, 183-191. http://dx.doi.org/10.1038/nmat1849
[9] Novoselov, K.S., Geim, A.K, Morozov, S.V., Jiang, D., Zhang, Y., Dubonos, S.V., Grigorieva, I.V. and Firsov, A.A. (2004) Electric Field Effect in Atomically Thin Carbon Films. Science, 306, 666-669. http://dx.doi.org/10.1126/science.1102896
[10] Novoselov, K.S., Geim, A.K, Morozov, S.V., Jiang, D., Katsnelson, M.I., Grigorieva, I.V., Dubonos, S.V. and Firsov, A.A. (2005) Two-Dimensional Gas of Massless Dirac Fermions in Graphene. Nature, 438, 197-200. http://dx.doi.org/10.1038/nature04233
[11] Kuila, T., Bose, S., Mishra, A.K., Khanra, P., Kim, N.H. and Lee, J.H. (2012) Chemical Functionalization of Graphene and Its Applications. Progress in Materials Science, 57, 1061-1105. http://dx.doi.org/10.1016/j.pmatsci.2012.03.002
[12] Ebrahimi, F. (2012) Nanocomposites—New Trends and Developments. InTech, Rijeka. http://dx.doi.org/10.5772/3389
[13] Nicolais, L., Borzacchiello, A. and Lee, S.M. (2012) Wiley Encyclopedia of Composites. 2nd Edition, John Wiley & Sons, Inc., Hoboken.
[14] Ciric-Marjanovic, G. (2013) Recent Advances in Polyaniline Research: Polymerization Mechanisms, Structural Aspects, Properties and Applications. Synthetic Metals, 177, 1-47.
http://dx.doi.org/10.1016/j.synthmet.2013.06.004
[15] Sapurina, I. and Stejskal, J. (2008) The Mechanism of the Oxidative Polymerization of Aniline and the Formation of Supramolecular Polyaniline Structures. Polymer International, 57, 1295-1325. http://dx.doi.org/10.1002/pi.2476
[16] Leea, H.Y., Rwei, S.P., Wang, L. and Chen, P.H. (2008) Preparation and Characterization of Core-Shell Polyaniline- Polystyrene Sulfonate@Fe3O4 Nanoparticles. Materials Chemistry and Physics, 112, 805-809. http://dx.doi.org/10.1016/j.matchemphys.2008.06.050
[17] Li, Z.H. and Wang, Y.W. (2010) Characterization of Polyaniline/Ag Nanocomposites Using H2O2 and Ultrasound Radiation for Enhancing Rate. Polymer Composites, 31, 1662-1668.
http://dx.doi.org/10.1002/pc.20956
[18] Jeon, I.Y., Tan, L.S. and Baek, J.B. (2010) Synthesis and Electrical Properties of Polyaniline/Polyaniline Grafted Multiwalled Carbon Nanotube Mixture via in Situ Static Interfacial Polymerization. Journal of Polymer Science Part A: Polymer Chemistry, 48, 1962-1972. http://dx.doi.org/10.1002/pola.23963
[19] Li, S., Gan, M., Ma, L., Yan, J., Tang, J., Fu, D., Li, Z. and Bai, Y. (2013) Preparation and Microwave Absorbing Properties of Polyaniline-Modified Silicon Carbide Composites. High Performance Polymers, 25, 901-906. http://dx.doi.org/10.1177/0954008313487393
[20] Suckeveriene, R.Y., Zelikman, E., Mechrez, G., Tzur, A., Frisman, I., Cohen, Y. and Narkis, M. (2011) Synthesis of Hybrid Polyaniline/Carbon Nanotube Nanocomposites by Dynamic Interfacial Inverse Emulsion Polymerization under Sonication. Journal of Applied Polymer Science, 120, 676-682. http://dx.doi.org/10.1002/app.33212
[21] Wang, H., Hao, Q., Yang, X., Lu, L. and Wang, X. (2010) A Nanostructured Graphene/Polyaniline Hybrid Material for Supercapacitors. Nanoscale, 2, 2164-2170.
http://dx.doi.org/10.1039/c0nr00224k
[22] Fan, Y., Liu, J.H., Yang, C.P., Yu, M. and Liu, P. (2011) Graphene-Polyaniline Composite Film Modi?ed Electrode for Voltammetric Determination of 4-Aminophenol. Sensors and Actuators B, 157, 669-674. http://dx.doi.org/10.1016/j.snb.2011.05.053
[23] Radhapyari, K., Kotoky, P., Das, M.R. and Khan, R. (2013) Graphene-Polyaniline Nanocomposite Based Biosensor for Detection of Antimalarial Drug Artesunate in Pharmaceutical Formulation and Biological Fluids. Talanta, 111, 47-53.
http://dx.doi.org/10.1016/j.talanta.2013.03.020
[24] Salavagione, H.J., Martinez, G. and Ellis, G. (2011) Recent Advances in the Covalent Modification of Graphene with Polymer. Macromolecular Rapid Communications, 32, 1771-1789. http://dx.doi.org/10.1002/marc.201100527
[25] Bai, H., Xu, Y., Zhao, L., Li, C. and Shi, G. (2009) Non-Covalent Functionalization of Graphene Sheets by Sulfonated Polyaniline. Chemical Communications, 13, 1667-1669.
http://dx.doi.org/10.1039/b821805f
[26] Tkalya, E.E., Ghislandi, M., de With, G. and Koning, C.E. (2012) The Use of Surfactants for Dispersing Carbon Nanotubes and Graphene to Make Conductive Nanocomposites. Current Opinion in Colloid & Interface Science, 17, 225- 232.
http://dx.doi.org/10.1016/j.cocis.2012.03.001
[27] Shan, C., Yang, H., Han, D., Zhang, Q., Ivaska, A. and Niu, L. (2009) Water-Soluble Graphene Covalently Functionalized by Biocompatible Poly-L-Lysine. Langmuir, 25, 12030-12033. http://dx.doi.org/10.1021/la903265p
[28] Odian, G. (2004) Principles of Polymerization. 4th Edition, John Wiley & Sons, Inc., Hoboken. http://dx.doi.org/10.1002/047147875X
[29] Bovey, F.A., Kolthoff, I.M., Medalia, A.I. and Meehan, E.J. (1955) Emulsion Polymerization. Interscience Publishers, Inc., New York.
[30] Zelikman, E., Suckeveriene, R.Y., Mechrez, G. and Narkis, M. (2010) Fabrication of Composite Polyaniline/CNT Nano?bers Using an Ultrasonically Assisted Dynamic Inverse Emulsion Polymerization Technique. Polymers for Advanced Technologies, 21, 150-152.
[31] Nordstrom, J., Klevan, I. and Alderborn, G. (2012) A Protocol for the Classification of Powder Compression Characteristics. European Journal of Pharmaceutics and Biopharmaceutics, 80, 209-216. http://dx.doi.org/10.1016/j.ejpb.2011.09.006
[32] Montes, J.M., Cuevas, F.G., Cintas, J. and Urban, P. (2011) Electrical Conductivity of Metal Powders under Pressure. Applied Physics A, 105, 935-947.
http://dx.doi.org/10.1007/s00339-011-6515-9
[33] Han, B.G., Han, B.Z. and Ou, J.P. (2009) Experimental Study on Use of Nickel Powder-Filled Portland Cement-Based Composite for Fabrication of Piezoresistive Sensors with High Sensitivity. Sensors and Actuators A: Physical, 149, 51-55.
http://dx.doi.org/10.1016/j.sna.2008.10.001
[34] Han, B.G., Yu, Y., Han, B.Z. and Ou, J.P. (2008) Development of a Wireless Stress/Strain Measurement System Integrated with Pressure-Sensitive Nickel Powder-Filled Cement-Based Sensors. Sensors and Actuators A: Physical, 147, 536-543.
http://dx.doi.org/10.1016/j.sna.2008.06.021
[35] Kawakita, K. and Tsutsmui, Y. (1966) A Comparison of Equations for Powder Compression. Bulletin of the Chemical Society of Japan, 39, 1364-1368.
http://dx.doi.org/10.1246/bcsj.39.1364
[36] Hauptmann, P. (1993) Sensors Principles and Applications. Carl Hanser Verlag, Munich.
[37] Costa, P., Ferreira, A., Sencadas, V., Viana, J.C. and Lanceros-Mendez, S. (2013) Electro-Mechanical Properties of Triblock Copolymer Styrene-Butadiene-Styrene/Carbon Nanotube Composites for Large Deformation Sensor Applications. Sensors and Actuators A, 201, 458-467. http://dx.doi.org/10.1016/j.sna.2013.08.007
[38] Hwang, S.H., Park, H.W. and Park, Y.B. (2013) Piezoresistive Behavior and Multi-Directional Strain Sensing Ability of Carbon Nanotube-Graphene Nanoplatelet Hybrid Sheets. Smart Materials and Structures, 22, Article ID: 015013.
http://dx.doi.org/10.1088/0964-1726/22/1/015013
[39] Li, W., He, D. and Bai, J. (2014) The Influence of Nano/Micro Hybrid Structure on the Mechanical and Self-Sensing Properties of Carbon Nanotube-Microparticle Reinforced Epoxy Matrix Composite. Composites Part A, 54, 28-36.
http://dx.doi.org/10.1016/j.compositesa.2013.07.002
[40] Ku-Herrera, J.J., Aviles, F. and Seidel, G.D. (2013) Self-Sensing of Elastic Strain, Matrix Yielding and Plasticity in Multiwall Carbon Nanotube/Vinyl Ester Composites. Smart Materials and Structures, 22, Article ID: 085003.
http://dx.doi.org/10.1088/0964-1726/22/8/085003
[41] Talmon, Y. (1999) Cryogenic Temperature Transmission Electron Microscopy in the Study of Surfactant Systems. Surfactant Science Series, 83, 147-178.
[42] Kim, D.K., Oh, K.W. and Kim, S.H. (2008) Synthesis of Polyaniline/Multiwall Carbon Nanotube Composite via Inverse Emulsion Polymerization. Journal of Polymer Science Part B: Polymer Physics, 46, 2255-2266. http://dx.doi.org/10.1002/polb.21557
[43] Haba, Y., Segal, E., Narkis, M., Titelman, G.I. and Siegmann, A. (1999) Polymerization of Aniline in the Presence of DBSA in an Aqueous Dispersion. Synthetic Metals, 106, 59-66.
http://dx.doi.org/10.1016/S0379-6779(99)00100-9
[44] Oyefusia, A., Olanipekuna, O., Neelgund, G.M., Peterson, D., Stone, J.M., Williams, E., Carson, L., Regisfor, G. and Oki, A. (2014) Hydroxyapatite Grafted Carbon Nanotubes and Graphene Nanosheets: Promising Bone Implant Materials. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 132, 410-416.
http://dx.doi.org/10.1016/j.saa.2014.04.004
[45] Ran, S., Chen, C., Guo, Z. and Fang, Z. (2014) Char Barrier Effect of Graphene Nanoplatelets on the Flame Retardancy and Thermal Stability of High-Density Polyethylene Flame-Retarded by Brominated Polystyrene. Journal of Applied Polymer Science, 131, 40520. http://dx.doi.org/10.1002/app.40520
[46] Xu, J., Liu, J. and Li, K. (2014) Application of Functionalized Graphene Oxide in Flame Retardant Polypropylene. Journal of Vinyl and Additive Technology, Early View.
http://dx.doi.org/10.1002/vnl.21415
[47] Marinho, B., Ghislandi, M., Tkalya, E., Koning, C.E. and de With, G. (2012) Electrical Conductivity of Compacts of Graphene, Multi-Wall Carbon Nanotubes, Carbon Black, and Graphite Powder. Powder Technology, 221, 351-358.
http://dx.doi.org/10.1016/j.powtec.2012.01.024
[48] Wang, D.W., Li, F., Zhao, J., Ren, W., Chen, Z.G., Tan, J., Wu, Z.S., Gentle, I., Lu, G.Q. and Cheng, H.M. (2009) Fabrication of Graphene/Polyaniline Composite Paper via in Situ Anodic Electro Polymerization for High-Performance Flexible Electrode. ASC Nano, 3, 1745-1752.
[49] Valentova, H. and Stejskal, J. (2010) Mechanical Properties of Polyaniline. Synthetic Metals, 160, 832-834. http://dx.doi.org/10.1016/j.synthmet.2010.01.007