Path Integral Approach to Faraday's Law of Induction

Show more

References

[1] D. Halliday, R. Resnick and K. S. Krane, “Physics,” 5th edition, wiley, New York, 2002.

[2] R. A. Serway and J. W. Jewett, “Physics for Scientists and Engineers,” Brooks Cole, Belmont, 2009.

[3] D. C. Giancoli, “Physics for Scientists and Engineers with Modern Physics,” 4th edition, Prentice-Hall, New York, 2008.

[4] D. J. Griffiths, “Introduction to Electrodynamics,” Prentice-Hall, New York, 1999.

[5] R. P. Feynman, “Space-time Approach to Non-Relativistic Quantum Mechanics,” Reviews of Modern Physics, Vol. 20, 1948, PP. 367-387. doi:10.1103/RevModPhys.20.367

[6] C. C. Gerry and V. A. Singh, “Feynman Path Integral Approach to the Aharonov-Bohm Effect,” Physical, Review D, Vol. 20, 1979, PP. 2550-2554.
doi:10.1103/PhysRevD.20.2550

[7] B. Balaji, “Universal Nonlinear Filtering Using Feynma Path Integrals: The Continuous Model With Aditive Noise,” PMC Physics A, Vol. 3, 2009.

[8] D. Li and A. G. Voth, “Feynman Path Integral Approach For Studying Intermolecular Effects In Proton-Transfer Reactions,” Journal of Physics and Chemestry, Vol. 95, 1999, PP. 10425- 10431.

[9] S. L. Mielke and D. G. Truhlar, “Improved Methods for Feynman Path Integra Calculations of Vibrational- Rotational Free Energies and Applications to Isotropic Fractionation of Hydrated Chloride Ions,” Journal of Physics and Chemestry, Vol. 113, 2009, PP. 4817-4827.

[10] P. Storey and C. C. Tannoudji, “The Feynman Path Itegral Approach to Atomic Interferometry,” Journal of Physics, Vol. 4, 1994, PP. 1999-2027.
doi:10.1051/jp2:1994103

[11] L. S. Schulman, “Techniques and Applications of Path Integration,” Wiley, New York, 1981.

[12] S. M. AL-Jaber and W. C. Henneberger, “The Restricted Rotor: The Effect of Topology on Quantum Mechanics,” Journal of Physics A: Mathematical and General, Vol. 23, 1990, P. 2939. doi:10.1088/0305-4470/23/13/030

[13] P. Girard and R. Mackenzie, “Altered States: Two Anyons via Path Integrals for Multiply Connected Spaces,” Physics Letters A, Vol. 207, 1995, PP. 17-22.

[14] D. K. Biss, “A Generalized Approach to the Fundamental Group,” The American Mathematical Monthly, Vol. 107, 2000, PP. 711-720.